
SimDriveline™ 1
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimDriveline™ User’s Guide

© COPYRIGHT 2004–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
August 2004 Online only New for Version 1.0 (Release 14+)
October 2004 Online only Revised for Version 1.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.0.2 (Release 14SP2)
April 2005 Online only Revised for Version 1.1 (Release 14SP2+)
September 2005 Online only Revised for Version 1.1.1 (Release 14SP3)
March 2006 First printing Revised for Version 1.2 (Release 2006a)
September 2006 Online only Revised for Version 1.2.1 (Release 2006b)
March 2007 Online only Revised for Version 1.3 (Release 2007a)
September 2007 Online only Revised for Version 1.4 (Release 2007b)
March 2008 Online only Revised for Version 1.5 (Release 2008a)

Contents

Introducing SimDriveline™ Software

1
Product Overview . 1-2

Product Definition . 1-2
Driveline Simulation and Physical Modeling 1-2

Related Products . 1-4
Required Products . 1-4
Other Related Products . 1-4

Running a Demo Model . 1-6
What the Model Represents . 1-6
What the Model Illustrates . 1-6
Opening the Model . 1-7
Running the Model . 1-11
Modifying the Model . 1-15

What Can You Do with SimDriveline™ Software? 1-20
Overview of SimDriveline™ Software 1-20
Modeling Drivetrains with SimDriveline™ Software 1-20
Connector Ports and Connection Lines 1-21
Inertias and Gears . 1-22
Complex Driveline Elements . 1-22
Actuating and Sensing Motion . 1-23
Simulating and Analyzing Motion . 1-24

Learning More . 1-25
Using the MATLAB® Help System for Documentation and

Demos . 1-25
Finding Special SimDriveline™ Help 1-25

v

Simple Models

2
Introducing the SimDriveline™ Block Libraries 2-2

About the SimDriveline™ Block Library 2-2
Accessing the Libraries . 2-2
Using the Libraries . 2-4

Essential Steps to Building a Driveline Model 2-7

Representing and Transferring Driveline Motion and
Torque . 2-9
About Inertia, Motion, and Gears . 2-9
Coupling Rotational Motion with Gears 2-9
Coupling Two Spinning Inertias with a Simple Gear 2-11
Coupling Two Spinning Inertias with a Variable Gear 2-16
Coupling Three Spinning Inertias with a Planetary

Gear . 2-17
Resolving Undetermined Motions in Complex Gears 2-21

Controlling Gear Couplings with Clutches 2-23
About Motion, Gears, and Clutches 2-23
Engaging and Disengaging Gears with Clutches 2-23
Modeling Realistic Clutch Systems with Loss 2-29
Braking Motion with Clutches . 2-32
Modeling Friction Clutches at a Fundamental Level 2-35

Combining Clutches and Gears into Transmissions . . . 2-36
About Gears, Clutches, and Transmissions 2-36
Modeling a Simple Two-Speed Transmission with

Braking . 2-37
Introducing the Transmission Templates Library 2-44
Modeling a CR-CR 4-Speed Transmission Driveline with

Braking . 2-45

Modeling and Simulating a Complete Car 2-52
About the Full Car Model . 2-52
Modeling the Engine . 2-53
Modeling the Transmission . 2-55
Coupling the Engine to the Transmission 2-56
Modeling the Wheel Assembly and Road Coupling 2-57

vi Contents

Controlling the Clutches and Braking 2-61
Running the Model . 2-64

Advanced Methods

3
Using the Simscape™ Editing Mode 3-2

Accessing and Changing the Simscape™ Configuration
Parameters . 3-2

Editing Block Parameters in Restricted Mode 3-3

Improving Performance . 3-4
Simulating Drivelines within the Simulink®

Environment . 3-4
Increasing Accuracy and Speed . 3-4
Optimizing Clutch Mode Changes and Fixed-Step

Solvers . 3-7
Troubleshooting Simulation Errors 3-10

Analyzing Degrees of Freedom . 3-13
About Driveline Degrees of Freedom and Constraints 3-13
Identifying Degrees of Freedom . 3-14
Fundamental Degrees of Freedom . 3-14
Connected Degrees of Freedom . 3-17
Constrained Degrees of Freedom . 3-18
Actuating, Sensing, and Terminating Degrees of

Freedom . 3-22
Counting Independent Degrees of Freedom 3-24
Counting Degrees of Freedom in a Simple Driveline with a

Clutch . 3-25

Trimming and Linearizing Driveline Models 3-30
Trimming, Inverse Dynamics, and Linearization 3-30
Finding and Using Driveline States 3-33
Trimming a Driveline with Inverse Dynamics 3-34
Linearizing a Driveline Model . 3-36
Counting Driveline States in a Full Car 3-37
Trimming a Full Car to Rest . 3-42
Linearizing a Full Car at Rest . 3-44

vii

How SimDriveline™ Software Works 3-47
About Driveline Simulation . 3-47
State, Constraint, and Motion Actuation Identification . . . 3-47
Independent State Selection and Initialization 3-48
Dependent State Selection and Initialization 3-48
Torque Analysis and Dynamical Simulation 3-48
Clutch Mode Iteration . 3-48

Generating Code . 3-49
About Code Generation from SimDriveline™ Models 3-49
Using Code-Related Products and Features 3-49
How SimDriveline™ Code Generation Differs from

Simulink® . 3-50
Using Run-Time Parameters in Generated Code 3-51

Limitations . 3-53
About SimDriveline™ and Simulink® Limitations 3-53
Continuous Sample Times Required 3-53
Changing Block Properties at the Command Line 3-53
Restricted Simulink® Tools . 3-53
Unsupported Simulink® Tool . 3-54
Simulink® Tools Not Compatible with SimDriveline™

Blocks . 3-54
Restrictions with Generated Code . 3-55

Block Reference

4
Drivelines and Inertias . 4-2

Gears . 4-2

Dynamic Elements . 4-3

Transmissions . 4-3

Sensors and Actuators . 4-4

viii Contents

Vehicle Components . 4-4

Interface Elements . 4-5

Utilities . 4-5

Blocks — Alphabetical List

5

Technical Conventions

A
Driveline Abbreviations and Conventions A-2

Abbreviations . A-2
Angular Motion . A-2
Gear Ratios . A-2

Driveline Units . A-4

Bibliography

B

Index

ix

x Contents

1

Introducing SimDriveline™
Software

With SimDriveline™ software, you can model drivetrain and powertrain
systems in an easy, natural way within MATLAB® and Simulink®. This
chapter introduces you to SimDriveline software, with an overview and an
example of modeling drivetrains.

Product Overview (p. 1-2) Introduction to SimDriveline
software and what you can do with it

Related Products (p. 1-4) Other products you need or might
want to use with SimDriveline
software

Running a Demo Model (p. 1-6) Running a simple drivetrain model

What Can You Do with
SimDriveline™ Software? (p. 1-20)

Synopsis of modeling drivetrains in
the SimDriveline environment

Learning More (p. 1-25) Where to get online help

1 Introducing SimDriveline™ Software

Product Overview

In this section...

“Product Definition” on page 1-2

“Driveline Simulation and Physical Modeling” on page 1-2

Product Definition
SimDriveline™ software is a block diagram modeling environment for the
engineering design and simulation of drivelines, or idealized powertrain
systems. A driveline propels a vehicle or craft by transferring its engine torque
and rotational power into vehicle kinetic energy and translational momentum.
The vehicle moves through or on a medium (air, water, ground) which propels
it by reaction forces and which acts as a load on the engine. Drivelines consist
of bodies spinning around fixed axes and subject to Newton’s laws of motion.
The bodies can revolve about one axis, multiple parallel axes, or multiple
nonparallel axes. Simple and complex gears constrain the bodies to revolve
together and transfer torque up and down the driveline axes. Locking and
unlocking clutches switch the driveline from one gear set to another. Gears
and clutches make up transmissions.

With SimDriveline software, you represent a driveline with a connected
block diagram, like other Simulink® models, and you can group blocks into
hierarchical subsystems. You can initiate and maintain rotational motion in a
driveline with actuators while measuring, via sensors, the motions of driveline
elements and the torques acting on them. You can return sensor signals to the
driveline via actuators, forming feedback loops and the basis for controls.

The SimDriveline libraries offer blocks to represent rotating bodies; gear
constraints among bodies; dynamic elements such as spring-damper forces,
rotational stops, and clutches; transmissions; and sensors and actuators.
You can also analyze linearized versions of your SimDriveline models and
generate code from them.

Driveline Simulation and Physical Modeling
SimDriveline software is based on the Simscape™ environment, the
platform product for the Simulink Physical Modeling family, encompassing

1-2

Product Overview

the modeling and design of systems according to basic physical principles.
Simscape software runs within the Simulink environment and interfaces
seamlessly with the rest of Simulink and with MATLAB®. Unlike other
Simulink blocks, which represent mathematical operations or operate on
signals, Simscape blocks represent physical components or relationships
directly.

Note This SimDriveline User’s Guide assumes that you have some experience
with modeling drivetrains and with building and running models in Simulink.

1-3

1 Introducing SimDriveline™ Software

Related Products

In this section...

“Required Products” on page 1-4

“Other Related Products” on page 1-4

Required Products
You must have current versions of the following products installed to use
the SimDriveline™ product:

• MATLAB®

• Simulink®

• Simscape™

Other Related Products
The related products listed on the SimDriveline product page at the
MathWorks™ Web site include toolboxes and blocksets that extend the
capabilities of MATLAB and Simulink. These products will enhance your
SimDriveline experience in various applications.

Physical Modeling Product Family
Use the Physical Modeling product family to model physical systems in
Simulink. In addition to the SimDriveline product, they include:

• Simscape, the platform and unifying environment for Physical Modeling
products

• SimHydraulics®, for modeling and simulating hydromechanical systems

• SimMechanics™, for modeling and simulating three-dimensional
mechanical systems

• SimPowerSystems™, for modeling and simulating electrical power systems

1-4

http://www.mathworks.com/products/simdrive/
http://www.mathworks.com/products/simscape/

Related Products

For Information About MathWorks™ Products
For more information about any MathWorks software products, see either

• The online documentation for that product if it is installed

• The MathWorks Web site at www.mathworks.com; see the “Products” section

1-5

http://www.mathworks.com

1 Introducing SimDriveline™ Software

Running a Demo Model

In this section...

“What the Model Represents” on page 1-6

“What the Model Illustrates” on page 1-6

“Opening the Model” on page 1-7

“Running the Model” on page 1-11

“Modifying the Model” on page 1-15

What the Model Represents
The demo model of this section, drive_crcr_ideal, simulates a complete
drivetrain. This model will help you understand how to model driveline
components with SimDriveline™ blocks, connect them into a realistic model,
use Simulink® blocks as well, and simulate and modify a drivetrain model.

The driveline mechanism modeled here is part of a full vehicle, without the
engine or engine-drivetrain coupling, and without the final differential and
wheel assembly. The model includes an actuating torque, driver and driven
shafts, a four-speed transmission, and a braking clutch.

What the Model Illustrates
The drive_crcr_ideal model contains a driveline that accepts a driving torque
and transfers this torque and the associated angular motion from the input
or drive shaft to an output or driven shaft through a transmission. The
model includes a CR-CR (carrier-ring–carrier-ring) four-speed transmission
subsystem, based on two gears and four clutches. (The demo does not use
the reverse gear available in the CR-CR transmission.) You can set the
transmission to four different gear combinations, allowing four different
effective torque and angular velocity ratios. A fifth clutch, outside the
transmission, acts as a brake on the driven shaft.

The CR-CR 4-Speed Transmission subsystem illustrates a critical feature
of transmission design, the clutch schedule. To be fully engaged, the
transmission, with four clutches and two gears, requires two clutches to
be locked and the other two unlocked at any time. (The transmission’s

1-6

Running a Demo Model

reverse clutch is not counted here.) The choice of which two clutches to lock
determines the effective gear ratio across the transmission. The clutch
schedule is the table of locked and free clutches corresponding to different
gear settings. If all four clutches are unlocked, the transmission is in neutral.
If the clutches are completely disengaged, no torque or angular motion at all
is transferred across the transmission.

Clutch Schedule for the CR-CR 4-Speed Transmission

Gear
Setting

Clutch A
State

Clutch B
State

Clutch C
State

Clutch D
State

1 L F F L

2 L F L F

3 L L F F

4 F L L F

L = locked, F = free

Opening the Model
You can open the CR-CR transmission demo in several ways:

• Enter drive_crcr_ideal at the MATLAB® command line.

• Open the MATLAB help browser from the MATLAB desktop. In the
navigator pane to the left, click the Demos tab. Open the Simulink node,
then the SimDriveline subnode. Under Transmission & Car Models,
locate the CR-CR 4-Speed Transmission demo entry and double-click it.

Examine the model and its structure. Open each subsystem in turn.

1-7

1 Introducing SimDriveline™ Software

• The main model window contains the CR-CR transmission subsystem, the
input or driver shaft assembly, and the output or driven shaft assembly.
Each assembly consists of a wheel with applied kinetic friction. The driver
shaft transmits an externally specified torque down the driveline.

The main model also includes a brake clutch. When this clutch is locked,
the driven shaft stops turning. This clutch must remain unlocked if the
CR-CR transmission is engaged.

Main Model Window

1-8

Running a Demo Model

• The CR-CR 4-Speed Transmission subsystem is a set of four clutches,
two planetary gears, and four inertias (rotating bodies). (Ignore the
reverse gear and associated clutch.) Within the subsystem, open the
clutch schedule block to see the four possible (forward) gear settings for
the CR-CR 4-speed transmission. Exactly two clutches must be locked at
any one time for the transmission to be engaged and to avoid conflicting
constraints on the gear motions.

CR-CR 4-Speed Transmission Subsystem

1-9

1 Introducing SimDriveline™ Software

• The Clutch Control subsystem provides the pressures that lock the
necessary clutches. The clutch controller is programmed to move the
transmission through a fixed sequence of gears, then unlock all the
transmission clutches, allowing the driven shaft to “coast” for a time, and
then engage and lock the brake clutch to stop the driven shaft.

Clutch Control Subsystem

• The Scopes subsystem provides Scope blocks to display the clutch pressure,
driver and driven shaft velocity, and clutch mode signals.

Scopes Subsystem

1-10

Running a Demo Model

Running the Model
To display the CR-CR driveline model’s behavior,

1 Open the Scopes subsystem and then each of the Scope blocks. Close the
Scopes subsystem.

2 Click Start. The model steps through the gears and then brakes.

3 Observe how the clutch pressure signals move the transmission into
one gear after another, at 0, 5, 10, and 15 seconds of simulation time.
Compare these clutch pressure signals to the clutch schedule in the CR-CR
transmission subsystem to determine which gear settings the model is
implementing. (In fact, the model steps through gears 1, 2, 3, and 4, before
coasting and then braking.)

1-11

1 Introducing SimDriveline™ Software

1-12

Running a Demo Model

4 Observe the clutch modes at the same time. When a clutch mode is zero,
that clutch is locked. The sequence of clutch locking and unlocking matches
the sequence from the clutch schedule.

1-13

1 Introducing SimDriveline™ Software

5 Compare the angular velocities of the driven and driver shafts. The effect
of the transmission is the result of the two planetary gears coupled in
different ways in the different gear settings. The effective drive ratio of
output to input shafts is the reciprocal of the ratio of output to input
angular velocities.

6 Observe what happens at 20 seconds. The transmission clutch pressures
drop to zero, and the transmission disengages. The transmission ceases
to transfer angular motion and torque from the driver to the driven shaft,
and the driven shaft continues to spin simply from inertia. A small kinetic
friction damping gradually slows the driven shaft over the next 6 seconds.

1-14

Running a Demo Model

7 At 26 seconds of simulation time, the brake clutch pressure begins to rise
from zero, and the brake clutch engages. The driven shaft decelerates more
drastically now. Between 26.0 and 26.1 seconds, the brake clutch locks, and
the driven shaft stops rotating completely.

Modifying the Model
You can modify this demo model to explore other SimDriveline features. Here
you modify and rerun the model to investigate two aspects of its motion.

• Measure the effective drive ratio of the CR-CR transmission in each gear
setting that it steps through.

• Change the gear sequence.

Measuring the Drive Ratio of the CR-CR Transmission States
The gear ratio (output to input) is the ratio of the output gear wheel radius to
the input gear radius. Equivalently, the gear ratio is the ratio of the number of
teeth on the output gear wheel to the number on the input wheel, or the ratio
of the output torque to the input torque. The ratio of the angular velocities of
output to input is the reciprocal of this gear ratio.

A transmission is a set of coupled gears. But for a particular transmission
gear setting, the ratio of driven (output) shaft velocity to the driver (input) is
fixed. Its reciprocal, the drive ratio, is like a gear ratio of an individual gear
coupling, but for the whole transmission.

1-15

1 Introducing SimDriveline™ Software

Add and connect the Simulink blocks necessary to measure the drive ratio
of the transmission.

1 From the Simulink Math Operations library, copy a Divide block and, from
the Simulink Sinks library, copy a Scope block.

2 From the Torque Driver subsystem outport, branch a signal line from
Motion Sensor1’s angular velocity output and connect it to the X inport
on the Divide block. From the velocity output of Motion Sensor2, on the
driven (output) shaft, again branch a signal line. Connect it to the ÷ inport
on the Divide block.

The effective output-to-input drive ratio is the ratio of input to output
velocities.

3 Connect the outport of the Divide block to the Scope. Rename Scope to
Drive Ratio.

CR-CR 4-Speed Model with Drive Ratio Measurement

1-16

Running a Demo Model

4 Open the Drive Ratio scope and restart the demo. Observe how the drive
ratio steps through a sequence of five-second states, in parallel with
the clutch pressures and clutch modes, until it reaches 20 seconds. The
drive ratio measurement after 20 seconds is not meaningful because the
transmission is uncoupled.

Just after 26 seconds, the driven shaft velocity drops to zero, and the Divide
block produces divide-by-zero warnings at the MATLAB command line.

5 Look inside the CR-CR 4-Speed Transmission subsystem for the Clutch
Schedule block and open it. Consult the drive ratios for each gear, 1, 2,
3, and 4, in terms of the gear ratios of the transmission’s two Planetary
Gears. Determine the numerical values for these drive ratios for gear
settings 1, 2, 3, and 4 and check them against the values displayed in the
Drive Ratio scope.

The drive ratio sequence should be 3, 5/3, 1, and 2/3, respectively, for the
first, second, third, and fourth intervals of five seconds each.

Changing the Transmission Gear Sequence
The drive_crcr_ideal demo, when you open it, is programmed to step through
CR-CR gear settings 1, 2, 3, and 4, before disengaging. Modify it to step
through settings 1, 2, 3, and 1, then disengage. The fourth gear requires

1-17

1 Introducing SimDriveline™ Software

A, B, C, and D to be free, locked, locked, and free, respectively. You will
modify the clutch pressure signal sequence from 15 to 20 seconds so that the
transmission is set in first, not fourth, gear. The first gear requires clutches
A, B, C, and D to be locked, free, free, and locked, respectively.

1 Open the Clutch Control and CR-CR transmission subsystems. Within
the transmission, open the Clutch Schedule block and review the clutch
lockings for each gear setting.

2 Open the Signal Builder block, labeled Clutch Pressures, to view the clutch
pressure signals.

Modify clutch pressure signals A, B, C, and D so that, between 15 and 20
seconds, clutches A and D are locked (not free) and clutches B and C are
free (not locked). Sufficient pressure will lock the clutches, while zero input
pressure leaves a clutch unlocked.

Modified CR-CR 4-Speed Transmission Clutch Pressures

1-18

Running a Demo Model

3 Restart the model. Observe that between 15 and 20 seconds of simulation
time the clutch pressures, the clutch modes, and the driven shaft velocity
are now different from the original version of the model.

Check the effective drive ratio between 15 and 20 seconds to confirm that
the CR-CR transmission during that time is set in gear 1, not gear 4. This
fourth interval of five seconds should exhibit a drive ratio of 3 instead of 2/3.

1-19

1 Introducing SimDriveline™ Software

What Can You Do with SimDriveline™ Software?

In this section...

“Overview of SimDriveline™ Software” on page 1-20

“Modeling Drivetrains with SimDriveline™ Software” on page 1-20

“Connector Ports and Connection Lines” on page 1-21

“Inertias and Gears” on page 1-22

“Complex Driveline Elements” on page 1-22

“Actuating and Sensing Motion” on page 1-23

“Simulating and Analyzing Motion” on page 1-24

Overview of SimDriveline™ Software
SimDriveline™ software is a set of block libraries and special simulation
features for use in the Simulink® environment. You connect SimDriveline
blocks to normal Simulink blocks through Sensor and Actuator blocks.

The blocks in these libraries are the elements you need to model driveline
systems consisting of any number of rotating inertias, rotating about one or
more axes, constrained to rotate together by gears, which transfer torque to
different parts of the driveline. You can represent drivelines with components
organized into hierarchical subsystems, as in normal Simulink models. You
can add complex dynamic elements such as clutches and transmissions,
actuate bodies with external torques or motions, integrate the Newtonian
rotational dynamics, and measure the resulting motions.

Modeling Drivetrains with SimDriveline™ Software
SimDriveline software extends Simulink with blocks to specify a driveline’s
components and properties and to solve the equations of motion. The blocks
are similar to other Simulink blocksets, with some properties unique to
SimDriveline software.

These are the major steps you follow to build and run a SimDriveline model
representation of a driveline:

1-20

What Can You Do with SimDriveline™ Software?

1 Specify rotational inertia for each body and connect the bodies with
driveline connection lines representing driveline axes. If needed, ground
the driveline to one or more housings fixed in space.

2 Constrain the driveline axes to rotate together by connecting them with
gears. Gears impose static constraints on driveline motions and transfer
torques at fixed ratios.

3 As necessary and desired, add dynamic driveline elements that transfer
torque and motion among driveline axes in a nonstatic way. These elements
include internal torque-generating components such as damped springs,
clutches and transmissions, and torque converters. You can also construct
and connect your own dynamic elements.

4 Set up actuators and sensors to initiate and record body motions, as well as
apply external torques to the driveline.

5 Connect the SimDriveline motion solver to the driveline and configure it.
Start the simulation, calling the Simulink solvers to find the motions of the
system. Display and analyze the motion.

Connector Ports and Connection Lines
Most SimDriveline blocks have special driveline ports . You connect
driveline ports with driveline connection lines, distinct from normal Simulink
lines. Driveline connection lines represent physical rotation axes along which
torque is transferred and around which inertias rotate.

• You can connect driveline ports only to other driveline ports.

• The driveline connection lines that connect driveline ports together are
not normal Simulink lines, which carry signals or indicate mathematical
operations. You cannot connect driveline lines directly to Simulink inports
and outports >.

• Two directly connected driveline components must corotate at the same
angular velocity.

• You can branch SimDriveline connection lines. When you do so, components
directly connected with one another continue to share the same angular
velocity. The torque transferred along the driveline axis is divided among
the multiple components connected by the branches. How the torque is
divided is determined by the driveline dynamics.

1-21

1 Introducing SimDriveline™ Software

The sum of all torques flowing into a branch point equals the sum of all
torques flowing out.

Inertias and Gears
SimDriveline software defines a driveline as a collection of bodies rotating
about driveline axes represented by connection lines. The bodies are defined
by their rotational inertias. The lines carry the rotational degrees of freedom
(DoF) and, unconstrained, rotate freely. Directly connecting one body to
another constrains both bodies to rotate at the same angular velocity. A
torque applied to one body is effectively applied to both.

You can also ground driveline axes to housings that do not move and that
represent infinite effective inertia.

Note All SimDriveline rotational DoFs are absolute and measured with
respect to a single implicit global coordinate system at rest.

In a real driveline, the bodies can also be connected indirectly by gears that
couple driveline axes. The gears constrain the axes to rotate together. These
gears can be simple or complex and can couple two or more axes. The gears
have two roles:

• They constrain the connected axes to corotate at angular velocities in
fixed ratio or ratios.

• They transfer the torques flowing along one or more axes to other axes,
also in fixed ratio or ratios.

Complex Driveline Elements

Tip These blocks serve as suggestions for developing variant or entirely new
models to simulate the same components. You can study these subsystems
by looking under their masks. If necessary, break the block’s library link
before modifying it, and then create your own version. Or create your own
completely new block from scratch.

1-22

What Can You Do with SimDriveline™ Software?

To create more realistic driveline models, you elaborate on simple drivelines
consisting of inertias and gears by adding complex mechanical elements
that generate torques internally within the driveline, between one axis and
another. Certain SimDriveline blocks encapsulate as subsystems entire
models of complex driveline elements:

• Clutches that model the locking and unlocking of pairs of driveline axes by
applying kinetic and static friction.

Note In the default case, adding clutches introduces algebraic loops (mode
iterations), non-time-based simulation steps.

• Transmission models that incorporate multigear sets and clutches into a
single subsystem

• Vehicle component models that represent engines, tires, and vehicle
dynamics

• Specialized torque models, such as torque converters, bilateral stops, and
damped spring-like torsion

Actuating and Sensing Motion
Sensors and Actuators are the blocks you use to interface between
SimDriveline blocks and normal Simulink blocks:

• Actuator blocks impart motion to driveline axes, either at zero time or
through the course of a simulation, and impose externally defined torques
on the bodies of a driveline.

• Sensor blocks measure the motions of, and the torques transferred along,
the axes of a driveline system.

Actuating inputs and sensor outputs are Simulink signals that you can define
and use like any other Simulink signal. For example, you can connect a
Sensor output to a Simulink Scope block and display the torques in a driveline
as functions of time.

1-23

1 Introducing SimDriveline™ Software

Simulating and Analyzing Motion
Once you specify all the rotational inertias of the bodies and interconnect
the bodies with gears and other driveline elements, the dynamical problem
of finding the system’s motion is solvable. To finish a driveline model and
prepare it for simulation, you must connect the driveline to the SimDriveline
environment. The environment defines the solver that integrates the
Newtonian dynamics for the system, applying all internal and external
torques and constraints to find the motions of the bodies.

Once your model is ready for simulation, you can run it and analyze its
motions and internal torques.

Trimming and Linearizing the Motion
In many cases, you do not know the torques necessary to produce a given set
of motions. By motion-actuating your driveline and measuring the resulting
torques, you can find the torques necessary to produce a specified motion
trajectory. This technique inverts the canonical approach to dynamics, which
consists of finding motions from torques.

A special case of inverse dynamics is trimming. This technique involves
searching for steady-state motions of the bodies, when their angular
accelerations and the torques they experience vanish. Using the linearization
tools in Simulink, you can perturb such a steady motion state slightly to find
how the system responds to small disturbances. The response indicates the
system’s stability and suitability for controllers.

Generating Code — Clutches and Algebraic Loops
SimDriveline software is compatible with Simulink Acceleration modes,
Real-Time Workshop® and xPC Target™ software. They let you generate code
versions of the models you create originally in Simulink with block diagrams,
enhancing simulation speed and model portability.

The presence of clutches in a driveline model induces mode iterations
and dynamical discontinuities and triggers algebraic loops in Simulink.
These discontinuities and algebraic loops place certain restrictions on code
generation.

1-24

Learning More

Learning More

In this section...

“Using the MATLAB® Help System for Documentation and Demos” on page
1-25

“Finding Special SimDriveline™ Help” on page 1-25

Using the MATLAB® Help System for Documentation
and Demos
You can get help online in a number of ways to assist you while you use
SimDriveline™ software. The MATLAB® help browser allows you to access
the documentation and demo models for all the MATLAB and Simulink®

based products that you have installed. The online help includes an online
index and search system.

Consult the MATLAB Getting Started Guide for more about the MATLAB
help system.

Finding Special SimDriveline™ Help
This user’s guide includes these reference chapters:

• Appendix A, “Technical Conventions” explains special conventions,
abbreviations, and units.

• Appendix B, “Bibliography” lists external references on driveline and
powertrain modeling and related topics.

In addition, many SimDriveline demos have help links represented by the
information symbol . Click this symbol to open that demo’s documentation
in the Help browser.

1-25

1 Introducing SimDriveline™ Software

1-26

2

Simple Models

This chapter introduces you to modeling drivetrains in the SimDriveline™
environment. After showing you how you how to access the SimDriveline
block library and reviewing the essential rules of connecting blocks and
transferring angular motion and torque, it moves you from modeling simple
gears to simulating a full car in a series of short tutorials.

Introducing the SimDriveline™
Block Libraries (p. 2-2)

How to access the blocks and what
they are

Essential Steps to Building a
Driveline Model (p. 2-7)

Summary of the most important
steps for representing a driveline by
a SimDriveline model

Representing and Transferring
Driveline Motion and Torque (p. 2-9)

Modeling inertias and driveshafts
and coupling them with gears

Controlling Gear Couplings with
Clutches (p. 2-23)

Coupling and decoupling driveshafts
with clutches

Combining Clutches and Gears into
Transmissions (p. 2-36)

Building complex, switchable
gearboxes with gears and clutches

Modeling and Simulating a Complete
Car (p. 2-52)

Creating and running a full car
model

This user’s guide assumes that you are familiar with building models in
Simulink®. If not, see the Simulink documentation.

file:///B:/matlab/doc/src/toolbox/physmod/simulink/simulink_product_page.html

2 Simple Models

Introducing the SimDriveline™ Block Libraries

In this section...

“About the SimDriveline™ Block Library” on page 2-2

“Accessing the Libraries” on page 2-2

“Using the Libraries” on page 2-4

About the SimDriveline™ Block Library
SimDriveline™ software is organized into a set of libraries of closely related
blocks. This section shows you how to open these SimDriveline block libraries
and explains the nature of each library.

Accessing the Libraries
There are several ways to open the SimDriveline block library on Microsoft
Windows and UNIX platforms.

Microsoft Windows Platforms
Microsoft Windows users can access the blocks through the Simulink® Library

Browser. Open the browser by clicking the Simulink button . Expand the
Simscape™ entry, then the SimDriveline subentry, in the contents tree.

2-2

Introducing the SimDriveline™ Block Libraries

You can also access the blocks directly inside the SimDriveline library in
several ways:

• In the Simulink Library Browser, right-click the SimDriveline subentry
under Simscape and select Open the SimDriveline Library. The library
appears.

2-3

2 Simple Models

• Click the Start button in the lower-left corner of your MATLAB desktop.
In the pop-up menu, select Simulink, then SimDriveline, then Block
Library.

• Enter drivelib at the MATLAB command line.

UNIX Platforms
UNIX users can click the Simulink icon on the MATLAB menu bar to open
the Simulink Library Browser. Open the Blocksets & Toolboxes library, then
the Simscape entry, and finally SimDriveline. You can also enter drivelib
at the command line.

SimDriveline™ Library
Once you perform one of these steps, the SimDriveline library opens. This
library displays seven top-level block groups. You can expand each library
by double-clicking its icon.

The next section summarizes the blocks of each library and their use. For
explanations of individual blocks, consult the SimDriveline “Block Reference”
reference.

Using the Libraries
The SimDriveline block library is organized into separate libraries, each with
a different type of driveline block.

2-4

Introducing the SimDriveline™ Block Libraries

Solver & Inertias
The Solvers & Inertias library provides the Inertia block, which represents a
user-defined rotating body specified by its moment of inertia, the fundamental
unit of driveline modeling. It also contains the Housing block, which
represents an immobile rotational ground.

Finally, the library contains the Driveline Environment block, which
configures the driveline settings of a SimDriveline block diagram, and
the Shared Environment block, which allows you to connect two driveline
block diagrams in a nonphysical way so that they share the same driveline
environment settings.

Gears
The Gears library contains blocks that represent simple and complex gears,
driveline elements that couple distinct driveline axes and constrain their
relative motions. The Gear blocks range from simple two-wheel gear couplings
with fixed and variable gear ratios, to complex multiwheel and multiaxis
gears such as planetary and differential gears.

Dynamic Elements
The Dynamic Elements library contains blocks that model such critical
drivetrain components as clutches, torque converters, damped springs, and
stops. Dynamic elements generate internal driveline torques.

The blocks of this library serve as suggestions for developing variant or
entirely new models to simulate the same components. Look under the block
mask, break the block’s library link before modifying it, and create your own
version.

Transmission Templates
The Transmission Templates are a set of predesigned transmission examples
constructed from gears, clutches, and inertias. You can copy and use these
examples in your drivetrain models.

Transmission templates copied into your model are not linked to the block
library. You can modify and rebuild these template copies at will.

2-5

2 Simple Models

Sensors & Actuators
The Sensors & Actuators library provides blocks for sensing and initiating the
motions of driveline axes and applying and sensing torques along those axes.

Interface Elements
The Interface Elements library enables connections between SimDriveline
driveshaft connection lines and Simscape mechanical rotational motion.

Utilities
The Utilities library contains miscellaneous blocks useful in building models.

Vehicle Components
The Vehicle Components library contains blocks that represent components
of a full vehicle beyond the drivetrain itself. It includes models of engines,
wheeled vehicles, and tires in contact with the ground.

The blocks of this library serve as suggestions for developing variant or
entirely new models to simulate the same components. Look under the block
mask, break the block’s library link before modifying it, and create your own
version.

2-6

Essential Steps to Building a Driveline Model

Essential Steps to Building a Driveline Model
The demo model of Chapter 1, “Introducing SimDriveline™ Software”
illustrates a typical drivetrain system you can model with SimDriveline™
software. It also illustrates the key rules for connecting driveline blocks to
each other and the dual roles of driveline connection lines: transferring torque
and enforcing angular velocity constraints. You should review these rules
before building and running the tutorial models of this chapter.

• Driveline blocks, in general, feature both driveline connector ports and
regular Simulink® inports and outports >. You connect connector ports to
one another and Simulink ports to one another. But you cannot connect a
driveline port to a Simulink port.

• The driveline connection lines interconnecting driveline connector ports
represent driveline axes and enforce physical relationships. Unlike

Simulink lines, they do not represent signals or mathematical operations,
and they have no inherent directionality.

• A driveline connection line represents an idealized massless and perfectly
rigid spinning shaft. A driveline connection line between two ports enforces
the constraint that the two driveline components so connected rotate at the
same angular velocity. The connection line also transfers any torque applied
to a driveline component at one end to the component at the other end.

• You can branch driveline connection lines. You must connect the end of any
branch of a driveline connection line to a driveline connector port .

• Branching a driveline connection line modifies the physical constraints
that it represents. All driveline components connected to the ends of a
set of branched lines rotate at the same angular velocity. The torque
transferred along the input driveline axis is split up among the branches.
How the torque is split depends on the dynamical details of the system
that you are modeling.

• Driveline connection lines satisfying the angular velocity constraint must
have the same initial angular velocities.

2-7

2 Simple Models

Branching Driveline Connection Lines

The Driveline Environment block does not use any torque. It does share the
angular velocity constraint from the branch point.

Symbolically, the branching conditions on driveline connection lines are

ω= ω1 = ω2= ω3 ...

τ = τ 1 + τ 2 + τ 3 ...

The driveline axes have an implicit directionality. Torque and motion are
transferred “down” the driveline from input or drive shafts to output or
driven shafts. Certain SimDriveline blocks require explicit directionality and
represent it by designating one driveline connector port as the input base (B)
and the other as the output follower (F). Relative motion of driveline axes or
shafts, when needed, is measured as follower relative to base.

Caution All motion in SimDriveline models, except when relative motion is
explicitly required, is measured in implicit absolute coordinates. An absolute
orientation defines zero angle, and an absolute reference frame defines zero
angular velocity. The Housing block implements the absolute zero angular
velocity and, if connected to a driveline axis, enforces this zero-motion state
on that axis.

2-8

Representing and Transferring Driveline Motion and Torque

Representing and Transferring Driveline Motion and
Torque

In this section...

“About Inertia, Motion, and Gears” on page 2-9

“Coupling Rotational Motion with Gears” on page 2-9

“Coupling Two Spinning Inertias with a Simple Gear” on page 2-11

“Coupling Two Spinning Inertias with a Variable Gear” on page 2-16

“Coupling Three Spinning Inertias with a Planetary Gear” on page 2-17

“Resolving Undetermined Motions in Complex Gears” on page 2-21

About Inertia, Motion, and Gears
The purpose of a gear set is to transfer rotational motion and torque at a
known ratio from one driveline axis to another. This section introduces you to
modeling gears and using them to couple bodies rotating on driveline axes.

Coupling Rotational Motion with Gears
A gear set consists of two or more meshed gears corotating at some specified
gear ratios. The ratios might or might not be constant. The gear ratios
determine how angular velocity and torque are transferred from one driveline
component to another.

Gear Coupling Rules
Ideal gears mesh and corotate at a point of contact without frictional loss
or slippage.

The simplest gear coupling consists of two circular gear wheels of radii r1 and
r2, spinning with angular velocities ω1and ω2, respectively, and lying in the
same plane. Their connected shafts are parallel and carry torques τ 1 and τ 2.
The gear ratio of gear 2 to gear 1 is the ratio of their respective radii: g21 =
r2/r1. The power transferred along either shaft is ω·τ .

2-9

2 Simple Models

The gear coupling is often specified in terms of the number of gear teeth on
each gear, N1 and N2. The gear ratio of gear 2 to gear 1 is then g21 = N2/N1 =
r2/r1.

The fundamental conditions on the simple gear coupling of rotational motion
are ω2/ω1 = ±1/g21 and τ 2/τ 1 = ±g21. That is, the ratio of angular velocities
is the reciprocal of the ratio of radii, while the ratio of torques is the ratio
of radii. The transferred power, being the product of angular velocity and
torque, is the same on either shaft.

The choice of signs indicates that the gears can spin in the same or in opposite
directions. If the gears are external to one another (corotating on their
respective outside surfaces), they rotate in opposite directions. If the gears
are internal to one another (corotating with the outside of the smaller gear
meshing with inside of the larger gear), they rotate in the same direction.

Warning Gear ratios should always be strictly positive. If a gear
ratio vanishes or becomes negative, the SimDriveline™ simulation
stops with an error.

Generalized Gear Coupling Rules
You need the general ideal gear coupling conditions if you are coupling gears
that are not constant in radii, not lying in the same plane, or not circular.

The general velocity constraint requires that the linear velocities of the gears
at the point of contact be the same. This is a vector condition on the angular
velocities ω1and ω2 and the radius vectors r1 and r2: ω1 x r 1 = ω2 x r2. The
alternative form in terms of the number of gear teeth is equivalent to this
linear velocity constraint. For the gear teeth to mesh, the number of teeth per
unit length of gear circumference must be the same on the two gears.

The general torque condition arises from the force equilibrium at the point of
contact. If there is no linear motion of the whole gear assembly, the forces at
contact F must be equal and opposite. The ratio of torques is then:

|τ 2|/|τ 1| = |r2 x F|/|r1 x F|

The power transferred along either shaft is conserved across ideal gear
couplings:

2-10

Representing and Transferring Driveline Motion and Torque

ω2·(r2 x F) = ω1·(r1 x F)

Coupling Two Spinning Inertias with a Simple Gear
In this example, you couple two spinning inertias, first, along a single shaft
(driveline axis), so that they spin with the same angular velocity; then
spinning along two shafts and coupled by a gear so that they spin at different
velocities; and finally, coupled by a gear and actuated by an external torque,
spinning at different rates and experiencing different torques. You use the
most basic SimDriveline blocks, such as Inertia, Simple Gear, and Driveline
Environment.

Modeling Two Spinning Inertias
Here you create the first version of the simplest driveline model, two inertias
spinning together along the same axis. Open the SimDriveline and Simulink®

block libraries and a new Simulink model window.

1 Drag and drop two Inertia, two Motion Sensor, and one Initial Condition
blocks into the model window.

2 Every topologically distinct driveline block diagram requires exactly one
Driveline Environment block, found in the SimDriveline Solver & Inertias
library. Copy one such block into your model.

3 From the Simulink library, drag and drop a Scope and a Mux block. Then
connect the blocks as shown.

2-11

2 Simple Models

Two Spinning Inertias

4 Open the Initial Condition block. In the Initial angular velocity field,
replace its default 0 entry with pi radians/second (rad/s). Click OK.

If you do not connect an Initial Condition block to a driveline axis, the
axis by default starts the simulation with zero angular velocity. You must
ensure that the initial angular velocities of your coupled driveline axes are
consistent with one another. If they are not, the simulation stops with
an error.

5 Open the Scope block and start the simulation. The two angular velocities
are constant at 3.14 radians/second.

Coupling Two Spinning Inertias with a Simple Gear
Now you modify the model you just created by coupling the two spinning
inertias with a simple, ideal gear with a fixed gear ratio.

1 From the SimDriveline block library, drag and drop a Simple Gear block
into your model. Open the block. Leave the default follower-base gear ratio
value at 2. Clear the Follower and base rotate in opposite directions
check box and click OK. The simple gear then represents two gear wheels

2-12

Representing and Transferring Driveline Motion and Torque

corotating in the same direction, with the smaller wheel inside the larger.
Reconnect the blocks as shown.

Two Spinning Inertias Coupled by a Gear

Leave the initial angular velocities at pi in the Initial Condition block.
SimDriveline software automatically sets the correct initial angular
velocity for Inertia.

2 Open the Scope and start the simulation. The two angular velocities
are constant at 3.14 and 6.28 radians/second for Inertia1 and Inertia,
respectively. The follower-base gear ratio is 2, and the angular velocity of
Inertia is twice that of Inertia1, with the same sign, because the two bodies
are spinning in the same direction.

3 Now select the Follower and base rotate in opposite directions check
box. The simple gear then becomes two wheels corotating in opposite
directions, with the two wheels meshed on their respective outer surfaces.

4 Restart the simulation. The two angular velocities are 3.14 and -6.28
radians for Inertia1 and Inertia, respectively. The second angular velocity

2-13

2 Simple Models

is twice the first and with opposite sign, because the two bodies are
spinning in opposite directions.

5 Finally, again clear the Follower and base rotate in opposite
directions check box.

Torque-Actuating Two Coupled, Spinning Inertias
In the final version of the simple gear model, you actuate the inertias with an
external torque instead of starting them with fixed initial angular velocities.
The external torque varies sinusoidally. You can find this completed model in
the demo drive_sgear.

1 From the SimDriveline block library, copy a Torque Actuator and two
Torque Sensor blocks. From the Simulink block library, drag and drop a
second Scope block, a second Mux block, and a Sine Wave block.

2 Disconnect the Inertia blocks from the Simple Gear and insert the Torque
Sensors. Disconnect and delete the Initial Condition block. The two axes
will now default back to zero angular velocities.

Connect the other blocks as shown.

2-14

Representing and Transferring Driveline Motion and Torque

Two Spinning Inertias Coupled by a Gear and Actuated with Torque

3 Open both Scope blocks and start the simulation.

The measured torques and angular velocities vary sinusoidally. The angular
velocity of Inertia1 is half that of Inertia, as you saw in the previous models.
But the torque in the second shaft is twice that in the first, as required by the
laws of gear coupling.

If you select the Follower and base rotate in opposite directions check
box in Simple Gear and restart the simulation, the same angular velocities
and torques result, except that the values associated with Inertia1 and the
second shaft are negative, because the second body and second shaft are
spinning in opposite directions.

Sensing and Actuating Motion and Torque
The Sensor and Actuator blocks you use in the preceding models illustrate
their dual nature: they act as driveline components themselves, but also let
you connect driveline blocks with the rest of Simulink.

2-15

2 Simple Models

• Sensor & Actuator blocks have both driveline connector ports and normal
Simulink ports >. You can extract sensor signal information with a block’s
Simulink outports. You can actuate motion or apply external torques by
feeding in actuation signals with a block’s Simulink inports.

Many other SimDriveline blocks feature Simulink ports for inserting and
measuring signals.

• You connect a Torque Sensor along a driveline axis, by placing it in series
with other driveline components.

• You connect the other Sensor and Actuator blocks across a driveline axis,
by branching the driveline connection line off to one side and connecting
this secondary line to the block; or by connecting the block to the end of
a driveline axis.

Coupling Two Spinning Inertias with a Variable Gear
You can modify the simple gear model further by replacing the fixed-ratio
gear with a gear whose gear ratio varies in time. You specify the gear ratio
variation with a Simulink signal. Start with the simple gear model you built
in the preceding section or by opening and editing the drive_sgear demo.

1 From the SimDriveline block library, drag and drop a Variable Ratio Gear
block and replace the Simple Gear block with it. Open Variable Ratio Gear
and ensure that the Follower and base rotate in opposite directions
check box is selected (the default). The two shafts will spin in opposite
directions.

2 The Variable Ratio Gear block accepts the continuously varying gear ratio
as a Simulink signal through the extra inport labeled r. For this example,
create a Simulink signal for the gear ratio with a Signal Builder block
from the Simulink block library. Build a signal that rises with constant
slope from 1 to 2 over 10 seconds. Then connect the Signal Builder block
to the r port.

2-16

Representing and Transferring Driveline Motion and Torque

Simple Variable Ratio Gear Model

3 Leave the other, original settings of the simple gear model unchanged.
Open both Scopes and start the simulation.

The two shafts’ angular velocities and torques have opposite signs. Apart
from this sign difference, the ratios of angular velocities and torques start at
1, because the initial gear ratio is 1. But as the gear ratio increases toward
2, the angular velocity of Inertia1 becomes smaller than that of Inertia,
while the associated torque in the second shaft (apart from the opposite
sign) becomes larger than that in the first shaft. Because of the changing
gear ratio, the motion and the torques are no longer strictly sinusoidal, even
though the actuating external torque is.

The drive_vgear demo is a full model of this type. To learn more about how to
use variable gears, including the Coriolis acceleration, consult the Variable
Ratio Gear block reference page.

Coupling Three Spinning Inertias with a Planetary
Gear
You can further modify the simple gear model and use it as a starting point for
studying more complex gear sets. One of the most important is the planetary
gear, which has three wheels, the ring, the sun, and the planet, all held
in place by a common carrier body. The planetary gear is interesting in its

2-17

2 Simple Models

own right, but also important because it is a common component in complex,
realistic transmissions.

1 Replace the Simple Gear in your model with a Planetary Gear from the
SimDriveline block library. A planetary gear splits input angular motion
from the carrier between the ring and sun wheels, each connected to their
respective bodies.

2 Copy another Inertia and another Motion Sensor as well. Connect the
blocks to form the new diagram as shown.

Simple Planetary Gear Model

3 Enter 2 for the Ring/Sun gear ratio in Planetary Gear. Open the Scope
and start the simulation to observe the angular velocities of the ring,
carrier, and sun, from largest to smallest. The ratio of the ring to sun gear
velocities is always two.

2-18

Representing and Transferring Driveline Motion and Torque

4 To see the ring and sun wheels spinning alone, you must lock the carrier.
In this case, you switch the torque actuation to the ring wheel. Copy
a Housing block from the SimDriveline block library. Disconnect and
delete Inertia, replacing it on the carrier driveline axis with Housing, and
reconnect the Driveline Environment block to this connection line.

5 Insert a Torque Actuator and move the Sine Wave block next to it. Connect
it to the inport.

2-19

2 Simple Models

Simple Planetary Gear Model with Locked Carrier

6 Open the Scope and start your model. Observe the angular velocities of
the ring, carrier, and sun.

2-20

Representing and Transferring Driveline Motion and Torque

The carrier, connected to Housing, does not move. The ring is driven with a
sinusoidal torque, and the sun responds by spinning in the opposite direction
(ring and sun gear wheels are external to one another) at twice the rate. The
ring wheel has twice the radius (or twice the number of teeth) as the sun, so
it spins half as fast.

To learn more about modeling planetary gears, see the Planetary Gear block
reference page.

Resolving Undetermined Motions in Complex Gears
A simple gear has two ports and imposes one constraint between them,
leaving one independent degree of freedom (DoF). Once one port is connected
to a driveshaft, the motion of the other port’s driveshaft is determined.

A complex gear has three or more ports and imposes one or more constraints
among them. A complex gear can have any number of independent DoFs,
including none.

2-21

2 Simple Models

The complete driveline into which the gear is embedded determines the initial
motion of all driveshafts by a combination of constraints, motion actuators,
and initial condition actuators. If, after the application of the complete
driveline’s constraints and actuators, one or more of the driveshaft motions
remain undetermined, these driveshafts start simulation with zero angular
velocity.

See “Analyzing Degrees of Freedom” on page 3-13 for more about degrees
of freedom.

Tip If a simulation apportions the initial motions of a complex gear in an
unsatisfactory way, determine how you want the overall initial motion divided
up and enforce that division with one or more Initial Condition blocks on one
or more of the complex gear shafts.

However you divide the initial motion among the gear shafts, ensure that
this division is consistent with all constraints in your driveline, as well as
any motion actuators.

2-22

Controlling Gear Couplings with Clutches

Controlling Gear Couplings with Clutches

In this section...

“About Motion, Gears, and Clutches” on page 2-23

“Engaging and Disengaging Gears with Clutches” on page 2-23

“Modeling Realistic Clutch Systems with Loss” on page 2-29

“Braking Motion with Clutches” on page 2-32

“Modeling Friction Clutches at a Fundamental Level” on page 2-35

About Motion, Gears, and Clutches
The most important requirement of a practical drivetrain is the ability
to transfer rotational motion and torque among spinning components at
different speeds and gear ratios. A single set of gears is usually not sufficient
to accomplish this. Clutches are the critical components that allow the
drivetrain to selectively transfer motion and torque at different gear ratios
under manual or automatic control.

This section explains how to model and use clutches in driveline models
without and with frictional losses and braking.

Engaging and Disengaging Gears with Clutches
A common problem in drivetrain design is transferring motion and torque at
different fixed gear ratios. Drivetrains are typically designed to switch among
a set of discrete gear ratios. Implementing the switch from one gear ratio to
another requires gradually disengaging one set of driveline couplings and
engaging another set. Clutches allow you to gradually engage and disengage
driveline shafts from one another.

The Controllable Friction Clutch block represents a standard surface
friction-based clutch that models this behavior and requires no more than
modest preparation to use. This section uses this block. You also can model
clutches in greater detail using the Fundamental Friction Clutch block, which
requires you to specify the static and kinetic clutch friction more completely.
See “Modeling Friction Clutches at a Fundamental Level” on page 2-35.

2-23

2 Simple Models

Tip You can model continuous motion-torque transfer with the Torque
Converter block, which simulates fluid viscosity instead of surface friction
and which never locks.

How a Clutch Works
A clutch makes two shafts spinning at different rates spin at a single rate by
applying forces that tend to accelerate one shaft and decelerate the other. The
most common way for a clutch to accomplish this is with surface friction. Such
a clutch can operate in one of three modes of motion:

• Disengaged: the clutch applies no friction at all.

• Engaged but unlocked: the clutch applies kinetic friction, and the two
shafts spin at different rates.

• Engaged and locked: the clutch applies static friction, and the two shafts
spin together.

A clutch consists of mated frictional surfaces overlapping one another and
connected on either side to a shaft. If the clutch is disengaged, the frictional
surfaces have no contact and the shafts spin independently. To engage the
clutch, a moderate amount of contact between two surfaces is induced by
applying clutch pressure (a force normal to the surfaces). The two surfaces in
contact and moving relative to one another experience kinetic friction, which
causes them to narrow their relative velocity. The faster surface tends to slow
down (unless an external torque is acting) and the slower one to speed up.
At some critical combination of reduced relative speed and pressure (normal
force), the clutch locks, so that the two shafts are spinning at the same rate.
The locking of the shafts is controlled by static friction, which holds the shafts
together as long as sufficient normal force is applied and no relative torque
is large enough to overcome the locking. If the clutch unlocks but is still
engaged, it again applies kinetic rather than static friction.

2-24

Controlling Gear Couplings with Clutches

Note The transition between unlocked and locked states is discontinuous.
Modeling a clutch locking or unlocking requires searching for the correct
combination of pressure and torque acting on the clutch.

The locking and unlocking are determined during simulation by accurate
zero-crossing detection and repeated mode iteration. In the default case,
this mode iteration induces algebraic loops in Simulink®, non-time-based
simulation steps that trigger warnings at the MATLAB command line.
You can change this default behavior through your driveline’s Driveline
Environment block.

Engaging and Disengaging a Gear with a Clutch
Here you construct a simple model that simulates a gear being engaged, then
disengaged, by a clutch. Torque and motion are transferred from one shaft to
another over a finite time interval. Start with the simple gear model of the
last section or with the drive_sgear demo. The completed clutch model is
the drive_sclutch demo.

1 From the SimDriveline™ block library, you need a Controllable Friction
Clutch block. Also copy a Signal Builder and a Constant block from the
Simulink block library.

2 Remove the Torque Sensor blocks, insert the Clutch between Inertia and
Simple Gear, then reconnect the connection lines.

3 In the Clutch dialog, select the Show mode signal port check box, but
leave the other defaults. Rearrange and connect the blocks as shown here.

2-25

2 Simple Models

Simple Clutch Model with Programmed Clutch Pressure

4 Use the Constant block as the input torque signal in place of the sinusoidal
signal. Reconfigure Mux and the first Scope blocks to accept three signals,
the two angular velocities and the clutch pressure. Connect the second
Scope to display the Clutch mode signal.

5 Open Signal Builder and construct the following signal. Signal Builder
specifies the clutch pressure signal, which is normalized between 0 and 1.
(The Peak normal force field in Clutch determines the maximum clutch
pressure.)

Time Range (Seconds) Signal Value

0 – 2 0

2 – 4 0 – 0.8 with constant slope

4 – 6 0.8

6 – 7 0.8 – 0 with constant slope

7 – 10 0

6 Open the Scopes and start the simulation.

The normalized clutch pressure signal follows the profile you created in Signal
Builder. From 0 to 2 seconds, the velocity of Inertia increases linearly because
it is subject to a constant torque. At 2 seconds, the clutch begins to engage,
and Inertia1 begins to spin. The velocity of Inertia continues to rise, although
at a slower rate, because the two inertias now share the external torque. At 4
seconds, the pressure reaches its maximum, and the clutch locks. Inertia1

2-26

Controlling Gear Couplings with Clutches

continues to speed up at a constant acceleration. At 6 seconds, the clutch
begins to disengage as the pressure drops. Inertia and Inertia1 continue to
accelerate with the applied torque. The clutch unlocks at 6.77 seconds and
fully disengages at 7 seconds. (The clutch unlocks a little before completely
disengaging because the pressure, even before vanishing, becomes too small
to maintain the lock.) Inertia is still accelerating. But Inertia1, now free of
the drive shaft and its torque, no longer accelerates and instead spins at a
constant rate without frictional loss.

The Clutch mode signal indicates the relative motion of its two connected
shafts. From 0 to 4 seconds, the two shafts are moving relative to one another.
The follower (driven) shaft is slower than the base (drive) shaft, so the mode
signal is -1. Once the two shafts lock, their relative velocity is 0, and the mode
signal switches to 0. At 6.77 seconds, they unlock, and the drive (base) shaft
starts accelerating faster than the driven (follower) shaft. The mode signal
switches back to -1.

2-27

2 Simple Models

While the two shafts are locked, between 4 and 6.77 seconds, Inertia and
Inertia1 spin together. But the Simple Gear, with a gear ratio of 2 between
follower and base, transforms Inertia1’s velocity to half that of Inertia. To see
the two Inertias locked and spinning at the same rate,

1 Remove Simple Gear and connect Inertia1 directly to the Clutch. Change
the Peak normal force value in Clutch to 2.5 (newtons).

2 Restart the simulation. Inertia and Inertia1 now spin at the same rate
while the clutch is locked.

Simple Clutch Model with No Gear

2-28

Controlling Gear Couplings with Clutches

Modeling Realistic Clutch Systems with Loss
To make your clutch system model more realistic, you should add frictional
damping to the spinning shafts of drive_sclutch. Here you add a kinetic
friction torque proportional to the angular velocity to both sides of the clutch.
A simple way to do this is to create a friction subsystem that applies such
a torque to any driveline axis it is connected to. Then you can copy the
subsystem and modify your existing clutch model by connecting the two copies
on either side of the clutch.

Tip The velocity used for this damping is the absolute velocity of a single
shaft relative to rest (as defined by a Housing block, for example). If you
had two driveline shafts and wanted to exert a relative damping between
them as a function of their relative velocities, you could use the Torsional
Spring-Damper block. In general, this block applies a mixture of spring-like
and damping torques between the two connected axes. But you can apply a
pure damping torque by simply setting the spring constant to zero.

Creating a Torque Damping Subsystem
The frictional torque is τ fric = -μω, where μ is the frictional proportionality
constant. To apply the frictional torque proportional to the velocity, you
need to

2-29

2 Simple Models

1 Measure the angular velocity of the driveline axis

2 Multiply it by -μ, because the frictional torque opposes the motion

3 Apply the resulting torque back to the driveline axis

To implement kinetic damping torque:

1 Copy Motion Sensor and Torque Actuator blocks and, from the Simulink
library, a Gain block, into your model window.

2 Connect the angular velocity port Vel to the inport of the Gain block and
the outport of the Gain block to the torque inport of the Torque Actuator
block. Enter -0.3 for the Gain value in the Gain dialog, leaving the other
defaults.

3 With your cursor, select the connected Sensor-Gain-Actuator block set, and
create a subsystem. Call it Damper. When you create the subsystem, the
port appearing on its block is a driveline connector port , not a Simulink
port >.

Now create a second copy of Damper.

Rotational Kinetic Damping Subsystem

Connecting and Simulating the Damped Clutch System
Complete and run the model.

2-30

Controlling Gear Couplings with Clutches

1 Connect the two Damper subsystems to the driveline of your previous
clutch model as shown.

Damped Simple Clutch Model

2 Change the simulation time to 20 seconds. Then open the Scope blocks
and click Start.

Readjust the horizontal axes of the Scopes with Autoscale to see the full
plots. The clutch pressure and external torques are applied as before. But
the shaft rotations are different now because of the damping.

Inertia1, as before, begins to spin when the clutch starts to engage at 2
seconds. After the clutch locks at 4 seconds, the body continues to accelerate,
but at a slower rate than it did without damping. At 6 seconds, the clutch
begins to disengage and completely disengages at 7 seconds. Unlike the

2-31

2 Simple Models

friction-free case, Inertia1, subject to friction, now starts to slow down. Its
angular velocity drops exponentially with time once the external torque
is removed.

The behavior of Inertia is more complex. It begins to spin up, but at a lower
rate than before, because of the damping. Between 2 and 7 seconds, Inertia
has to share the external torque with Inertia1 via the Clutch and the Simple
Gear. After seven seconds, the external torque applies to Inertia alone. It
continues to accelerate, but at an ever-slowing rate, because of the damping.
If you let the simulation run without stopping, Inertia will approach its
terminal angular velocity, a state where the frictional torque exactly balances
the externally applied torque. The terminal velocity is ωterm= τ ext/μ or 1/0.3 =
3.3333 radians/second in this case. The Scope plot shows this terminal value.

Braking Motion with Clutches
A special case of transferring motion occurs when you want to brake the
spinning of a driveline component, slowing it down until it stops. The
common way to brake the motion is to couple the spinning component to a
fixed housing, which effectively has infinite inertia and is represented by a
SimDriveline Housing block. Because the housing cannot move, a driveline
axis locked to a housing also cannot move. You can implement the gradual
engagement or disengagement of a driveline component with a housing
using a clutch, just as you use a clutch to gradually couple or uncouple two
spinning shafts.

Braking with a Double-Clutch System
The drive_clutch_engage demo model is an elaboration on the preceding
models of this chapter and features two clutches, one of which acts as a
brake. The model also includes frictional damping for greater realism. The
simulation time is set to inf (infinity).

2-32

Controlling Gear Couplings with Clutches

Simple Clutch Model with Brake Clutch

This model again uses the basic structure of inertia-clutch-gear-inertia. The
first body, Inertia, is still driven by an external torque, and the initial velocities
are still 0. There is, however, another clutch for the second body, Inertia1,
that can couple Inertia1 to the Housing and bring it to a stop. Another new
feature, compared to the preceding models, is the switching assembly made
of the Clutch Switch and Flipper blocks. You can flip this switch to apply a
constant clutch pressure signal to either Gear Clutch or Brake Clutch. The
two Damper subsystems are identical to those you constructed in “Modeling
Realistic Clutch Systems with Loss” on page 2-29, except that the frictional
constants, the Gain values of the Gain blocks, are set to -0.1.

1 Start the model with the Clutch Switch set to 1. The clutch pressure is
then applied to Gear Clutch, which engages and locks the driver and driven
shafts and causes Inertia and Inertia1 to rotate together.

2-33

2 Simple Models

The angular velocity of Inertia1 (2.5 radians/second) is half that of Inertia
(5 radians/second) because the gear ratio of the Simple Gear block is 2,
follower to base. In this switch mode, no clutch pressure is applied to Brake
Clutch, which remains unengaged. The mode of Brake Clutch is then -1,
because Brake Clutch’s follower, the Housing block, is at rest, while the
base, Inertia1, is spinning. The mode of Gear Clutch is 0, because its base
and follower, the driver and driven shafts, are locked together.

After an initial transient, the system settles into a steady state of motion
where the external torque is exactly balanced by the frictional losses. The
effective frictional constant, with two dampers, is 0.2. With an external
torque of 1 newton-meter, the terminal angular velocity of Inertia is then ω
= 1/0.2 = 5 radians/second.

2 With the simulation running, now change the Clutch Switch to 0 to
disengage Gear Clutch and engage Brake Clutch. The system undergoes
another transient while Gear Clutch disengages and Brake Clutch engages.

The angular velocity of Inertia and the driver shaft settles down to a new
steady state of 10 radians/second, twice its old speed. The mode of Gear
Clutch is now -1, because the driven shaft (follower) is not moving, while
the driver shaft (base) continues to spin.

Because Gear Clutch is now disengaged, Inertia is no longer subject to
the second frictional damping block, Damper1. The effective frictional
constant drops in half, to 0.1, and the terminal velocity doubles. At the
same time, Inertia1 is no longer receiving torque through Gear Clutch. But
Brake Clutch is engaged and couples Inertia1 to the immobile Housing.
Once engaged, the kinetic friction of Brake Clutch and Damper1 bring
the driven shaft and Inertia1 to a stop. Because it locks, Brake Clutch’s
mode becomes 0.

To see the transient behavior at simulation start and when you switch the
clutches,

1 Start the simulation and let it run for a short time. Then switch Clutch
Switch to the other mode.

2 After another short time, stop the simulation. Use the Autoscale feature
of the Scopes to capture the entire simulation sequence. The transients
from the starting behavior and the switching transition will be visible.

2-34

Controlling Gear Couplings with Clutches

For example, in these plots, the model was started with Clutch Switch set to 1
(Gear Clutch locked, Brake Clutch disengaged, no braking). The velocities
quickly climbed to their steady-state values. Then Clutch Switch was changed
at about 682 seconds of simulation time. Gear Clutch disengaged and Brake
Clutch engaged, braking the driven shaft. The driver shaft’s angular velocity
rose from 5 to 10 radians/second. The driven shaft’s angular velocity dropped
to 0.

Modeling Friction Clutches at a Fundamental Level
The Controllable Friction Clutch block is easy to use, requiring only a single
normalized pressure signal to modulate the kinetic friction. You fix all its
other characteristics before starting simulation.

Modeling a friction clutch at a fundamental level requires direct control over
the kinetic and static friction torques. The Fundamental Friction Clutch block
gives you that greater control. With this block, you must specify, by either
external signals or internal sensor-actuator feedback, the clutch’s kinetic
friction and static friction limits (positive and negative) as functions of time.

2-35

2 Simple Models

Combining Clutches and Gears into Transmissions

In this section...

“About Gears, Clutches, and Transmissions” on page 2-36

“Modeling a Simple Two-Speed Transmission with Braking” on page 2-37

“Introducing the Transmission Templates Library” on page 2-44

“Modeling a CR-CR 4-Speed Transmission Driveline with Braking” on page
2-45

About Gears, Clutches, and Transmissions
In a real drivetrain, you couple an input or drive shaft to one of many output
or driven shafts, or to one driven shaft with a choice of several gear ratios.
The drivetrain then requires several clutches to switch between gears. You
couple one of the driven shafts or one of the gear sets by engaging one of
the clutches. You then switch to another output shaft or another gear ratio
by disengaging one clutch and engaging another.

You can also engage more than one clutch at a time to use multiple gear sets
simultaneously. Realistic transmissions engage multiple gear sets at the
same time to produce a single effective gear ratio, or drive ratio. Changing
gears requires disengaging one set of clutches and engaging another set. You
specify the set of clutches to engage and disengage for each desired gear ratio
in a clutch schedule. Designing a clutch schedule and shaping and sequencing
the clutch pressure signals frequently constitute the most difficult part of
transmission design. A realistic transmission model must also include losses
due to friction and imperfect gear meshing.

This section explains how to model transmissions, first by creating a
transmission model from gears and clutches, then by using the SimDriveline™
library of predesigned transmission subsystems. One such predesigned
transmission, the CR-CR 4-speed transmission, is the basis of another
example.

2-36

Combining Clutches and Gears into Transmissions

Note The examples in this section contain unrealistic clutch pressure signals
that rise and fall sharply. A realistic transmission is controlled by clutch
pressure signals that rise and fall smoothly. For a car demo with smoothed
clutch pressure signals, see “Modeling and Simulating a Complete Car” on
page 2-52. “Improving Performance” on page 3-4 discusses the relationship
of sharp and smooth clutch pressure signals to the Simulink® solver choice
and settings.

Modeling a Simple Two-Speed Transmission with
Braking
The demo model drive_strans_ideal contains a driveline system that makes
up a simple but complete transmission.

Simple Transmission with Two Gear-Clutch Pairs and Braking

2-37

2 Simple Models

The model is an elaboration of the drive_clutch_engage demo model presented
in “Braking Motion with Clutches” on page 2-32. This model also contains
two driveline shafts or axes, with an actuating torque applied to the driven
shaft. Both the driver and the driven shafts are subject to, respectively, large
and very small kinetic damping torques. (The kinetic torque constants μ are
0.1 and 10-4 newton-seconds/radian, respectively, in Damper1 and Damper2.)
In the steady state, the driving and damping torques balance one another,
and the two shafts spin at constant rates. (If braking is engaged, the driven
shaft is stopped, as before.) But there are now two selectable gears to couple
the two axes, instead of one.

This transmission model couples the gears in a simple way, with each gear
and the brake associated with its own respective clutch. Coupling one gear
requires engaging and locking its corresponding clutch, while ensuring that
the other two clutches are disengaged. Switching on the brake requires
disengaging the two gear clutches and locking the brake clutch.

Setting Up the Gears, Clutches, and Brake
The two gears are Simple Gear blocks with different gear ratios, each
connected in series with its corresponding clutch. The two gear-clutch pairs
are coupled in parallel, and this parallel assembly then couples the driver
shaft to the driven shaft, with their two spinning inertias. One gear is a “low”
gear, the other a “high” gear. The “low” and “high” labels, following common
usage for automobile gears, refer, not to the gear ratios, but the angular
velocity ratios.

Caution The ratio of speeds in a gear is the reciprocal of the gear ratio.

• The “low” gear is the Simple Gear 5:1 block, which can be coupled by
engaging its corresponding clutch, modeled by the Lo Gear Clutch block.
The gear ratio is 5:1, so that the ratio of output to input (follower to base)
angular speeds is 1/5. Hence the name “low gear.” Such a gear, by the same
token, has a high torque transfer ratio of 5, from base to follower. In an
automobile, a “low” gear like this is used to accelerate the vehicle from a
stop by transferring a large torque down the drivetrain from the engine.

• The “high” gear is the Simple Gear 2:1 block, coupled by engaging its own
clutch, represented by the Hi Gear Clutch block. The gear ratio is 2:1, and

2-38

Combining Clutches and Gears into Transmissions

the angular velocity ratio of follower to base is 1/2, or 5/2 times the ratio in
the “low” gear. Hence the name “high gear.” The torque transfer ratio is
only 2 from base to follower. An automotive “high” gear is used for milder
acceleration or coasting once a vehicle is moving at a significant speed. The
vehicle acceleration generated by this gear is less than that generated
by the “low” gear.

While either Gear Clutch is engaged, the Brake Switch is disabled. You can
start braking and bring the driven shaft to a stop by engaging Brake Clutch.
This clutch, once locked, holds the driven axis fixed relative to the Housing.
The driver shaft continues to spin, subject to the competing driving and
damping torques. In this transmission, the brake is completely disabled if
either gear clutch is engaged. Disengaging the gears puts the transmission
into “neutral” and allows you to use the Brake Switch to apply or not apply
brake clutch pressure.

Clearly, this simple transmission is based on mapping each transmission
state one-to-one with an engaged clutch. You cannot engage more than one
clutch at a time without creating conflicts between gear ratios or between the
driver shaft and the Housing. In a real transmission, such conflicts generate
internal stresses and might destroy the driveline. Such conflicts cause a
SimDriveline simulation to stop with an error.

Controlling the Transmission State with a Clutch Schedule
The requirement to engage a certain clutch or set of clutches and disengage
others, both to implement transmission functions and to avoid motion conflicts
between gears, is the basis for all clutch schedules. Simulink provides a
number of ways to implement clutch schedules, depending on the complexity
of the transmission and how much realism you require for the clutch pressure
signals.

Warning You must check every transmission’s clutch schedule to
implement the various transmission states correctly and to avoid
motion conflicts among gear sets. You must also check clutch
pressure signal profiles to make sure that any transmission’s clutches
are engaged, locked, unlocked, and disengaged in a realistic and
conflict-free manner. Unphysical or conflicting clutch schedules and
clutch pressure signals lead to SimDriveline simulation errors.

2-39

2 Simple Models

Avoiding such conflicts leads, for the drive_strans_ideal model, to a unique
clutch schedule.

Clutch Schedule for the Simple Two-Speed Transmission

Transmission State Clutch1 State Clutch2 State Clutch3 State

Neutral/Braked D/L Disengaged Disengaged

Low Gear Disengaged Locked Disengaged

High Gear Disengaged Disengaged Locked

The model contains a simple Clutch Control subsystem to implement the
clutch schedule and to output (or, in the case of the brake, enable) the clutch
pressure signals to lock each clutch as needed.

Clutch Control Subsystem for Simple Transmission Model

In this simplified and unrealistic clutch control model, the clutch pressure
signals are just constants: 1 to engage and lock a clutch, and 0 to disengage it.
(A clutch pressure signal is normalized to equal 1 when the surface friction
force equals the peak normal force specified in the Controllable Friction
Clutch dialog.) The brake signal is not a pressure, but only an enabling signal
for the Brake Switch in the main model. The table of these constants, for
each transmission state, is contained in the Clutch Schedule Table block,
customized from the Simulink LookupND Direct block, which is discussed in
the Simulink documentation. Open the dialog to see this table.

2-40

file:///B:/matlab/doc/src/toolbox/physmod/simulink/simulink_product_page.html

Combining Clutches and Gears into Transmissions

The table is indexed, starting from zero, in both row and column. An input
signal of 0 causes the block to output the first column of table values; a value
of 1 outputs the second column; and a value of 2, the third column. The first
column applies zero pressure to the two gear clutches and enables the Brake
Switch in the main model. Turning this switch on applies full pressure to the
brake clutch. Turning it off releases the brake pressure. The second column
applies full pressure to the low gear clutch and zero pressure to the high gear
and the brake clutches. The third column applies full pressure to the high
gear clutch and zero pressure to the other two.

These different table columns are activated by changing the positions of the
two Manual Switch blocks, labeled Gear Switch and Neutral Switch. Putting
the transmission into “neutral” and enabling the brake (upper position of
Neutral Switch) feeds a zero signal to Clutch Schedule Table and activates
the braking schedule. Switching the brake to off (lower position) allows the
Gear Switch schedule signal to pass through instead. This signal has value 1
for the low gear and 2 for the high gear.

This clutch control subsystem is adequate for a simple model like this one,
but not realistic. A full clutch control model requires realistic clutch pressure
signals that rise from and fall back to zero in a smooth way. See “Shaping

2-41

2 Simple Models

Realistic Clutch Pressure Signals” on page 2-51 for more about modeling
realistic clutch control pressures.

Running the Model, Switching Gears, and Braking
To see how gear switching works,

1 Start the model.

Its initial transmission state is low gear. The driven shaft spins at one-fifth
the rate of the driver shaft.

2 Change the Gear Switch from Low to High, and observe how the driven
shaft velocity increases in the Shaft Velocities scope.

The driven-to-driver ratio is now one-half. (The driver shaft velocity
decreases slightly, because it experiences the damping torque on the driven
shaft differently depending on which gear is engaged.)

3 Change the Gear Switch back to Low, then observe that the driven shaft
again spins more slowly.

At the same time, while you switch the gears back and forth, the clutches,
as shown in the Clutch Modes scope, switch from Lo Gear Clutch being
locked, to the Hi Gear Clutch being locked, and back. When one is locked,
the other is unlocked.

4 Now enable the brake by changing the Neutral Switch to the upper position.

The two gear clutches unlock and disengage. The driven shaft, subject
to very light damping, now slows gradually. The Brake Clutch remains
unengaged.

5 By turning the Brake Switch to on, you can switch the Brake Clutch to the
locked mode and bring the driven shaft to an immediate and complete stop.
The driver shaft continues to spin at 10 radians/second.

Running the Model Without Clutch Mode Iteration
In realistic transmissions, the pressure signal applied to one clutch is often
determined by the locked/unlocked mode of another clutch. Simulation of
such a system requires simulation time to briefly stop progressing and mode

2-42

Combining Clutches and Gears into Transmissions

iteration to search for a self-consistent state of all clutches across the entire
driveline.

This transmission is simple and non-self-referential, insofar as each clutch
is controlled by external signals only. No clutch is controlled by the mode
of another clutch. In such a case, you do not need mode iteration for the
clutches, because the simulation does not have to search for a collective
self-consistent state of all clutches. The externally imposed clutch schedule
does that automatically.

To turn off clutch mode iteration,

1 Open the model’s Driveline Environment block (the block with the “Env”
icon).

2 Select the Disable mode iteration for clutch locking check box.

3 Start the model again. The model runs faster and without mode iterations.

Disabling clutch mode iteration to avoid algebraic loops is sometimes
necessary when you are using code generation-based simulation options in
Simulink and Real-Time Workshop®. See the Controllable Friction Clutch and
Driveline Environment block reference pages for more details.

Adding Realistic Clutch Signals
The most critical addition you can make to the drive_strans_ideal model
for greater realism is to change the clutch pressure signals from step
functions (0 to 1, or 1 to 0) to signals with a smooth rise and fall. A variant
model, drive_strans, has smoothed clutch pressure signals. The price of
this greater realism is a potentially more complex model. It is critical for
Simulink to determine transmission motion for exactly two clutches to always
remain locked, or for all four to be unlocked, at any instant. Changing
the transmission’s gear settings while maintaining this requirement is an
example of the central problem of transmission design.

The final case study of the chapter, “Modeling and Simulating a Complete
Car” on page 2-52, implements smoothed clutch pressure signals. See
“Shaping Clutch Pressure Signals” on page 2-63.

2-43

2 Simple Models

Introducing the Transmission Templates Library
The SimDriveline Transmission Templates library provides examples of
complete, working multiclutch transmission subsystems. The blocks in this
library are unmasked. If you copy one into a model and double-click it, the
subsystem opens directly, allowing you to inspect the component blocks.

CR-CR 4-Speed Transmission Template Subsystem

Note The Transmission blocks are not library-linked. Once you make a copy
from the library to your model, you are free to modify your copy.

Each type of transmission block has its own clutch schedule, which you can
view by opening the subsystem, then opening the clutch schedule block inside.
(The corresponding block reference pages also list the clutch schedules for
each Transmission block.) Properly engaging a transmission in a particular
gear setting requires engaging a certain number of clutches, no more and
no fewer. Locking too few or too many clutches, or engaging the wrong
clutches, will lead to conflicting gear meshings and simulation errors. You can
disengage a transmission by setting all clutch pressure signals to 0.

2-44

Combining Clutches and Gears into Transmissions

Customizing and Using Transmission Blocks
Because you do not have to take any extra steps to unlink a transmission
block from its library, you can easily modify the Transmission block copies in
your models. You will typically need to change gear ratios, clutch pressures,
and gear shaft inertias in any case. If you open the Transmission block to
view the underlying subsystem, you can proceed to modify blocks at will.

Caution Observe certain cautions when modifying the transmission
subsystem component blocks:

• Do not remove any of the gear shaft inertia blocks or set their inertia values
to 0. These inertias are needed for realistic simulation and preventing
acceleration singularities when torques are applied.

• The clutch schedule for any transmission type specifies those clutches
that must be engaged and those that must be free at any instant for the
transmission to be properly in gear. Make sure that your clutch pressures
respect this requirement. Set all clutch pressures to 0 only if you want to
disengage the transmission completely (place it in neutral). Do not engage
any more or fewer clutches than needed, at any time during simulation.

• If you want to redesign the transmission, by adding or removing gears,
you must consider whether you need as well to add or remove clutches
and redesign the clutch schedule. You also might need to add or remove
gear shaft inertias.

The next section presents a driveline model based on the CR-CR 4-speed
transmission model of the Transmissions library.

Modeling a CR-CR 4-Speed Transmission Driveline
with Braking
The drive_crcr_ideal demo model builds on the previous clutch and
transmission models with a more realistic transmission. (This is the same
model presented in “Running a Demo Model” on page 1-6.) It uses the CR-CR
4-Speed transmission block from the Transmissions library to transfer motion

2-45

2 Simple Models

and torque from one shaft and inertia to another. The model is otherwise
similar to drive_strans_ideal.

CR-CR 4-Speed Transmission Model

A Torque Driver subsystem feeds a constant driving torque to the driver shaft
(Inertia1). Two damping subsystems apply heavy and light kinetic friction
to the driver and driven shafts, respectively. The three Scopes measure
the shaft velocities, clutch pressures, and clutch modes, respectively. The
model pre-load function defines essential parameters in the workspace. You
can view these by opening the Workspace Variables block or opening the
Callbacks tab of the File > Model Properties dialog. The CR-CR 4-Speed
transmission subsystem couples the driver to the driven shaft (Inertia2). A
brake clutch and fixed housing allow you to brake the driven shaft if the
transmission is disengaged. When you first open the model, the Clutch
Control subsystem contains a set of programmed clutch signals for shifting
the CR-CR transmission through a preconfigured gear and braking sequence
over 30 seconds.

For clarity, the model’s major signal buses have been bundled as vectors and
directed using Goto and From blocks. The Scopes are collected in the Scopes
subsystem for convenience.

Replacing Programmed with Controllable Clutch Pressures
To achieve manual control over the clutch pressures,

2-46

Combining Clutches and Gears into Transmissions

1 Change the simulation time in the Simulink model toolbar from 30 to inf.

2 Open the drive_crcr_clutch_control_switch model and convert the entire
model to a replacement Clutch Control subsystem. (This model is not
intended to be run by itself.)

3 Delete the original Clutch Control subsystem in drive_crcr_ideal and
replace it with this new subsystem.

When you have completed these steps, you can run the model without
stopping and manually switch the transmission into different gear settings.

Manual Clutch Control for CR-CR Transmission

Configuring the CR-CR Transmission Subsystem
The CR-CR 4-Speed transmission block used in drive_crcr_ideal has
default settings for its component Gears, Clutches, and Inertias, with some
exceptions. Certain parameters are changed for greater realism and are
referenced to variables defined in the workspace when the model opens. These
variables are used in the four CR-CR Clutch blocks A, B, C, and D. (Ignore
the reverse gear clutch, Clutch R.)

2-47

2 Simple Models

CR-CR 4-Speed Transmission Clutch Variables

Workspace
Variable

Meaning

num_fric_surf Number of frictional surfaces in each clutch

eff_tor_rad Effective torque radius in each clutch (m)

peak_normal Peak normal force on clutch surfaces (N)

fric_coeff (matrix) Kinetic friction coefficient as a function of the
relative angular velocity of the clutch shafts

Within the CR-CR transmission subsystem,

1 Open the Clutch Schedule block to see the table of gear settings, clutch
lockings, and gear ratios. (The CR–CR 4-Speed block reference page also
discusses the clutch schedule.)

There are four distinct (forward) gear settings, each with a different
effective gear ratio. For the transmission to be properly engaged and
transmit torque and motion, exactly two clutches must be locked at any
instant. Unlocking all the clutches simultaneously puts the transmission
into neutral (no motion or torque transfer).

2 Close the transmission subsystem and return to the main model window.
The main model’s Damping subsystems use these variables for frictional
damping of the driving (engine) and driven shafts coupled across the
transmission.

Drive Shaft Damping Coefficients

Workspace Variable Meaning

eng_damping Driver (engine) shaft kinetic friction coefficient
(N·m·s/rad)

driven_damping Driven shaft kinetic friction coefficient (N·m·s/rad)

2-48

Combining Clutches and Gears into Transmissions

Programming the Clutch Schedule Logic

Note This and the following sections assume you have replaced the original
programmed Clutch Control subsystem with the manually switchable
replacement subsystem. See “Replacing Programmed with Controllable
Clutch Pressures” on page 2-46.

From the main model, open the Clutch Control subsystem. The Clutch
Schedule Logic block embodies the CR-CR 4-Speed clutch schedule as a truth
table for the four forward gears. Each row represents a different gear setting.
You select a particular row for output by inputting a set of 1’s and 0’s that
specify the row value as a binary number.

CR-CR 4-Speed Clutch Schedule Logic

Gear Setting Truth Table Row Truth Table Value

1 002 = 0 1 0 0 1 0

2 012 = 1 1 0 1 0 0

3 102 = 2 1 1 0 0 0

4 112 = 3 0 1 1 0 0

In the order of the CR-CR Clutches — A, B, C, and D, respectively — the
sequence of 1’s and 0’s indicates which clutches are locked (1) and which are
free (0). These Boolean values are then converted into normalized clutch
pressure signals. The fifth value in each row represents the disengaged
reverse gear Clutch R.

Programming the Reverse Gear. By default, the Forward/Reverse Switch
is set to the up position, placing the transmission in forward motion. If you
want to engage the reverse gear, flip the switch to the down position.

Open the corresponding Reverse block to see the reverse gear clutch schedule
as a truth table.

2-49

2 Simple Models

CR-CR Reverse Gear Clutch Schedule Logic

Gear Setting Truth Table Value

Reverse 0 0 0 1 1

Running the CR-CR Transmission Model — Changing Gears
You are now ready to run the model.

1 Open the Scopes subsystem, then the individual Scope blocks. Close the
Scopes subsystem.

With the Scopes, you can observe the angular velocities of the driving and
driven shafts, and the pressures and modes of the four clutches.

2 Open the Clutch Control subsystem. (This should be the manually
switchable subsystem.) Ensure that the Forward/Reverse Switch is set to
up and the Neutral Switch to down.

Start the model. You can change the forward gear settings by flipping
the Bit0 and Bit1 Switch blocks and moving through truth table entries
corresponding to each setting. (See the table, CR-CR 4-Speed Clutch
Schedule Logic on page 2-49.) Switching from one gear setting to another
unlocks some clutches and locks others, but always leaves two clutches
locked. As you flip between gear settings, the transmission transfers
motion and torque at different ratios.

3 You can disengage the CR-CR transmission completely by flipping the
Neutral Switch to up. This step also enables the Brake Switch in the main
model. (If the transmission is engaged, not in neutral, the Brake Switch
is disabled.)

If the transmission is disengaged but without braking, the driven shaft
velocity slowly decreases under the influence of frictional damping. If you
brake, however, by switching on the Brake Switch, the driven shaft velocity
immediately drops to 0. The braking here works the same way as in the
previous examples.

4 You can put the CR-CR transmission into reverse by keeping the Neutral
Switch flipped to down and by flipping the Forward/Reverse Switch to down.

2-50

Combining Clutches and Gears into Transmissions

As with a real transmission, it is best to transition the transmission model
through neutral and bring the driven shaft to a rest before putting the
transmission into reverse gear.

Shaping Realistic Clutch Pressure Signals
The drive_crcr_ideal model allows you to switch forward gear settings without
placing the CR-CR transmission in neutral. Of course, controlling a real
manual transmission requires moving the transmission out of gear and into
neutral, picking a new gear setting, then putting the transmission into the
new gear. You can mimic these steps by flipping the Neutral Switch on,
changing the gear setting, then slipping the Neutral Switch off.

The most critical addition you can make to this model for greater realism is to
change the clutch pressure signals from step functions (0 to 1, or 1 to 0) to
signals with a smooth rise and fall. A variant model, drive_crcr, has smoothed
clutch pressure signals. The price of this greater realism is a potentially
more complex model. It is critical for Simulink to determine transmission
motion for exactly two clutches to always remain locked, or for all four to be
unlocked, at any instant. Changing the CR-CR transmission’s gear settings
while maintaining this requirement is an example of the central problem of
transmission design.

The following case study, “Modeling and Simulating a Complete Car” on page
2-52, implements smoothed clutch pressure signals. See “Shaping Clutch
Pressure Signals” on page 2-63.

2-51

2 Simple Models

Modeling and Simulating a Complete Car

In this section...

“About the Full Car Model” on page 2-52

“Modeling the Engine” on page 2-53

“Modeling the Transmission” on page 2-55

“Coupling the Engine to the Transmission” on page 2-56

“Modeling the Wheel Assembly and Road Coupling” on page 2-57

“Controlling the Clutches and Braking” on page 2-61

“Running the Model” on page 2-64

About the Full Car Model
The full car drivetrain simulation of the drive_full_car demo encompasses
all the points of this chapter and many key SimDriveline™ features. It
includes engine and transmission models and a simplified model of the
drivetrain-wheel-road coupling. The engine and transmission are coupled
with a torque converter. Programmed clutch control steps the transmission
through four gears and neutral before a braking torque is applied. The
clutch pressure signals are smooth and more realistic than the sharp clutch
pressure signals used in the preceding studies. This section explains these
features, subsystems, and their relationship and purposes, leading you to
actual simulation.

Understanding the Model’s Global Structure
Open the demo. The model pre-load function defines a set of workspace
variables in MATLAB used by some of the blocks. Note the major systems
of this car model.

2-52

Modeling and Simulating a Complete Car

Full Car Model

The main driveline subsystems are

• Engine

• Torque converter

• Transmission

The large subsystem to the right represents the final part of the drivetrain:
the vehicle inertia, the wheels, their coupling to the road, and braking. All the
other subsystems in the model represent inputs that control the drivetrain or
outputs that measure its behavior.

Modeling the Engine
SimDriveline software is primarily devoted to modeling the rotational
dynamics of drivelines, accepting rotational power from any source that can be
modeled in Simulink® and converted to a connection line transferring torque.
In most applications, your modeled driveline power and torque sources will
represent engines and motors. For the purposes of system modeling, an
engine or motor specifies an output torque as a function of driveline speed.
However you specify the behavior of the engine or motor, its SimDriveline
output is a connector port transferring torque to the rest of the system.

2-53

2 Simple Models

Using an Engine Block from Vehicle Components
The Vehicle Components library contains blocks representing simple engine
models. You control these engine models with a Simulink throttle signal. The
heart of the engine model is a function that specifies the maximum engine
torque possible for each engine speed. The throttle signal controls how much
torque, out of this maximum possible, the engine can deliver. The maximum
possible torque itself is a function of the engine speed at any instant.

The drive_full_car demo uses a Gasoline Engine block from Vehicle
Components. The block’s properties specified in its dialog include the engine’s
maximum power, its speed at maximum power, and its maximum possible
speed. The throttle signal is programmed by a Signal Builder block that
specifies a time-depend throttle profile over the course of the simulation.
Open these block dialogs to view these settings and the throttle profile. The
throttle signal is programmed to produce a realistic acceleration profile and to
be consistent with the gear shifting sequence discussed in “Controlling the
Clutches and Braking” on page 2-61.

Engine Throttle Signal Profile

2-54

Modeling and Simulating a Complete Car

Learn more about the Engine block models from their block reference pages.
See also “Vehicle Components” on page 2-6.

Alternative and Advanced Methods for Modeling Engines
The engine models of the Vehicle Components library are simple. You can
create your own, more complex, engine models by elaborating on the basic
pattern of engine speed determining engine torque output. The complete
engine model involves a feedback loop because the output torque, once
connected to the external load, determines how fast the output driveshaft
spins. The engine model then uses this output speed to set the maximum
possible torque.

Several important engine features to consider in a more complete model
would be

• Distinguishing steady-state behavior from engine start-up, when the
engine speed-engine torque function has not yet reached its maximum
possible envelope

• Details of mechanical power production, such as air-fuel compression and
combustion, or electromagnetic induction

• Additional controls beyond what can be represented by a single throttle
signal

Modeling the Transmission
The CR-CR 4-speed transmission subsystem in the drive_full_car model is
similar to the previous example, “Modeling a CR-CR 4-Speed Transmission
Driveline with Braking” on page 2-45. The clutch and planetary gear
properties are set in the block dialogs with workspace variables.

Workspace Variable Meaning

inPlanetRatio Gear: input planetary gear ring/sun ratio

outPlanetRatio Gear: output planetary gear ring/sun ratio

numFricSurf Clutch: number of surface friction surfaces

effTorqueRadius Clutch: effective torque radius (m)

2-55

2 Simple Models

Workspace Variable Meaning

peakNormForce Clutch: peak normal force on friction surfaces
(N)

coeffFricTable (matrix) Clutch: surface friction function (tabulated
discrete function)

staticFricPeak Clutch: static (locking) friction peak factor

velTol Clutch: clutch velocity locking tolerance (rad/s)

For more about gears, clutches, and transmissions, see the Controllable
Friction Clutch and CR–CR 4-Speed block reference pages, as well as “Gears”
on page 2-5 and “Transmission Templates” on page 2-5.

Coupling the Engine to the Transmission
The drive_full_car model couples the engine and the transmission through a
torque converter subsystem.

Torque Converter Subsystem

A torque converter, like a clutch, couples two independent driveline axes in
such a way as to transfer angular motion and torque from an input to an
output shaft. However, unlike a clutch, a torque converter never locks and
the output shaft never exactly reaches the speed of the input. (The torque
converter transfers motion by hydrodynamic viscosity, not by surface friction.)

2-56

Modeling and Simulating a Complete Car

So a torque converter does not step through discrete stages and avoids the
motion discontinuities inherent in friction clutches.

To mimic engine idling at the start of the simulation, the initial condition (IC)
actuators start the input and output shafts at nonzero velocities.

The clutch in this subsystem is present to lock the input and output shafts
together once the main clutches of the transmission have reached the highest
gear. See “Controlling the Clutches and Braking” on page 2-61.

See the Torque Converter and Initial Condition block reference pages for
more details about these blocks.

Modeling the Wheel Assembly and Road Coupling
The CR-CR 4-speed transmission feeds its output torque to the final drive
subsystem, Vehicle Load - Wheels - Road - Power Scope, which represents
the vehicle inertia (the load on the transmission), the wheels, and the wheel
contact with the road. This subsystem also incorporates a brake model that
can impose, with the appropriate input signal, a brake torque on the wheels.
This torque acts on the driveline in addition to the reaction stress imposed by
the wheel contact with the road. The wheel-road load model is implemented
with Simulink alone.

This final drive subsystem is masked. Open it by right-clicking it, then
selecting Look Under Mask.

2-57

2 Simple Models

Final Drive Subsystem: Vehicle Load, Wheels, and Road Coupling

The subsystem has three major areas:

• On the leftmost part of the diagram is the terminus of the driveline proper,
where the driveline connection lines end.

• At the upper left are a collection of sensor and actuator blocks coupling the
driveline proper to the wheels and brakes.

• In the center and right are the Simulink blocks that model the wheel-road
coupling and braking.

Modeling the Final Driveline Assembly and Vehicle Load
The driveline connection line sequence of the whole full car model ends with
the first set of blocks on the left of the subsystem. The torque and motion are
transferred forward through the Forward Gear and are loaded down with
the Vehicle Effective Inertia. Two workspace variables specify the relevant
variables.

2-58

Modeling and Simulating a Complete Car

Workspace
Variable

Meaning

ratioForwDrive Gear: follower-to-base gear ratio in the final driveline
stage

inertiaVehicle Inertia: effective rotational inertia of the final
driveline assembly (kg-m2)

The final driveline connection emerges from the Forward Gear-Vehicle
Effective Inertia assembly into a sensor-sensor-actuator set.

• The Torque Sensor measures the final torque along the driveline. This
torque is used to calculate the power transferred along the drivetrain.

• The Motion Sensor measures the final angular motion of the driveline.
This angular motion is used to calculate the driveline and braking power
and to model the wheel-road contact.

• The Torque Actuator feeds the torques from the road load and the braking
back to the driveline.

The road load and braking are discussed in “Modeling the Road Load —
Adding Brakes” on page 2-59 and “Measuring the Driveline and Braking
Power” on page 2-60.

Modeling the Road Load — Adding Brakes
The road load-braking part of the subsystem is modeled in Simulink only. It
requires the final drivetrain angular velocity to compute the road load, which
is the reaction torque of the road back on the driveline via the wheel-tire
assembly. This road load torque is a function of the vehicle’s linear speed
implemented by the Road Load block. (This function is controlled by a set of
workspace variables. Open the Road Load block dialog to view the functional
form.) The Linear Speed (Gain) block converts the driveline speed to a linear
velocity with an effective wheel radius, the workspace variable radiusWheel.

The braking torque is provided by the Brake Torque input signal. The total
torque is computed from the road load torque and the brake torque. The
overall sign of the total torque is set by the sign of the linear vehicle speed.
This total torque is fed back as a reaction torque on the end of the driveline
by the Torque Actuator to the left.

2-59

2 Simple Models

If the applied braking torque is large enough and acts for long enough, it
brings the vehicle speed to zero. At that instant the Stop Simulation block
ends the simulation, if it has not already reached the end of the simulation
time specified in the model toolbar.

Measuring the Driveline and Braking Power
The power transferred along a driveline axis is the angular velocity ωof the
driveshaft multiplied by the torque τ transferred along the shaft: P = ω·τ .

The final drive subsystem computes the final drive power and braking power
by multiplying the angular velocity by the final driveline torque (measured by
the Torque Sensor) and by the brake torque, respectively, then converting the
MKS result to horsepower units. The Power scope displays both horsepower
values. Open the Power scope, and close the final drive subsystem.

Alternative Differential, Wheel, Road, and Braking Models
The drive_full_car model uses the purely Simulink part of the final drive
subsystem to model the end of the driveline and its connection to the wheels
and road.

The Vehicle Components library provides a set of specialized blocks to
model the end of a driveline and the resulting motion of the wheels and
vehicle. You could create an alternative model to the final drive subsystem of
drive_full_car by using these specialized blocks. The model uses one of these
blocks already, the Gasoline Engine, as discussed in “Modeling the Engine” on
page 2-53. For wheel-vehicle modeling, you can use the Tire and Longitudinal
Vehicle Dynamics blocks instead of creating such models in Simulink. The
drive_4wd_dynamics and drive_vehicle demo models illustrate the use of
these blocks.

The braking model of drive_full_car applies a brake torque directly to the
final driveshaft with a Torque Actuator. You could build an alternative brake
model around a clutch. See “Braking Motion with Clutches” on page 2-32 and
“Modeling a Simple Two-Speed Transmission with Braking” on page 2-37.

2-60

Modeling and Simulating a Complete Car

Controlling the Clutches and Braking
Return to the main model window of drive_full_car. Like any engineering
system, the full car model requires control signals. One of these signals
controls the throttle, as explained in “Modeling the Engine” on page 2-53. The
other signals control the clutches and the braking. “Running the Model” on
page 2-64 presents the full interplay of these control signals and how they
determine the simulation results.

Programming the Transmission and Lockup Clutches
The Programmed Clutch Control is the central subsystem for the clutch
signals. Its master signal controls two clutch sets, the four clutches of the
CR-CR 4-Speed transmission and the one lockup clutch of the Converter
subsystem.

1 Open the subsystem. Four Step blocks contribute to the total or master
clutch signal, which steps from 1 up through 5, through the intermediate
integers, each step at a 10-second interval, from 0 to 40 seconds of
simulation time.

Master Clutch Control Signal

2 Close the Programmed Clutch Control subsystem.

3 Open the Clutch Hydraulics subsystem.

2-61

2 Simple Models

Clutch Hydraulics Subsystem

This subsystem, consisting of Simulink Lookup and Transfer Fcn blocks,
converts the single clutch control signal to a set of four clutch signals that
shift the CR-CR 4-speed transmission through a fixed gear sequence: first
gear, second gear, third gear, and fourth gear, at 0, 10, 20, and 30 seconds,
respectively, of simulation time. Each gear is reset when the master
clutch signal from Programmed Clutch Control steps up to the next higher
integer, from 1 through 4. At 40 seconds, the master clutch signal reaches
the value of 5. All the transmission clutches then unlock, and the CR-CR
transmission shifts into neutral. (See “Shaping Clutch Pressure Signals”
on page 2-63 for more about the transfer function blocks.) You can view the
clutch schedule for the CR-CR 4-speed transmission by opening the CR-CR
4-Speed subsystem, then double-clicking the Clutch Schedule block.

4 Close the Clutch Hydraulics subsystem.

5 Now open the Converter with Lockup Clutch subsystem, which was
discussed in “Coupling the Engine to the Transmission” on page 2-56.
This subsystem waits for the master clutch signal to reach the value of 5
before locking the two shafts and bypassing the motion transfer through
the Torque Converter. Before 40 seconds of simulation time (before the
transmission shifts into neutral), the driveline motion is transferred
through the Torque Converter. The Lockup Clutch is triggered to lock by
the Lockup Control subsystem. Like the transmission clutch pressures, the
clutch pressure signal is reshaped by a transfer function.

2-62

Modeling and Simulating a Complete Car

Lockup Control Subsystem

This behavior mimics a common drivetrain behavior. When the engine
speed reaches a critical value or the transmission reaches the highest gear
and the driveline coasts, a lockup clutch closes and forces the engine and
the transmission input shafts to spin at the same rate. (A torque converter
requires the two shafts to have different velocities to transfer any torque.)
You could redesign the lockup control logic by instead implementing a
conditional locking of the clutch, testing for a critical value of the engine
shaft angular velocity.

6 Close all the torque converter-related subsystems.

Shaping Clutch Pressure Signals
Both the Clutch Hydraulics subsystem and the Lockup Control subsystem
filter the clutch signals through Simulink Transfer Fcn blocks in order to
shape the pressure signals from sharp steps to smooth rises or falls.

The characteristic rise/fall time of the transfer functions in the Clutch
Hydraulics subsystem is set by the workspace variable clutchRise, with units
of seconds. If s0 = 1/clutchRise, the transfer functions have the form s0/(s+s0).

You can determine the rise/fall time of the lockup clutch by inspecting its
Transfer Fcn block.

Applying the Brake Torque
A separate control subsystem, Programmed Brake Torque, designed around a
Signal Builder block, generates the Brake Torque signal fed into the final drive
subsystem, Vehicle Load - Wheels - Road - Power Scope. Open the subsystem.

2-63

2 Simple Models

Brake Torque Signal Profile

The brake torque signal is designed not to be applied until after the CR-CR
4-speed transmission is set into neutral and the lockup clutch is triggered.
The signal is 0 N•m until 44 seconds of simulation time. It then rises to a
large value at the end of the simulation at 50 seconds. The brake torque is
strong enough to stop the driveline completely before 50 seconds. Close the
Programmed Brake Torque subsystem and related windows.

Running the Model
Now simulate the car.

1 After closing all subsystems, open the Road Speed scope.

2 Also open the Engine Scopes, Drive Ratio Scope, and Clutch Scopes
subsystems. Then open the Engine RPM & Torque, Drive Ratio, Clutch
Modes, and Clutch Slippages scopes. Close the subsystems.

3 Review the simulation sequence before starting the model. The Brake
Torque signal stops the vehicle before the nominal 50 seconds of simulation
time.

Time Range (s) CR-CR Gear Setting Brake Torque (N-m)

0 – 10 1 0

10 – 20 2 0

20 – 30 3 0

2-64

Modeling and Simulating a Complete Car

Time Range (s) CR-CR Gear Setting Brake Torque (N-m)

30 – 40 4 0

40 – 44 Neutral 0

44 – 50 Neutral 0 – 10,000

4 Start the simulation, then review the scope outputs.

Clutch Modes and Slippages
The Clutch Modes scope shows the sequence of clutch locking and unlocking
that moves the transmission through its gear stages, first through fourth gear.
The Clutch Slippages scope displays how much each clutch slips (relative
angular velocity between the follower and base shafts in each clutch) when it
is unlocked.

2-65

2 Simple Models

Engine Speed & Torque — Road Speed
The Engine RPM & Torque scope shows the engine speed in revolutions
per minute (rpm), as well as the engine output torque, in newton-meters
(N-m), delivered to the Converter subsystem. When the transmission shifts
into neutral at 40 seconds, the engine speed jumps to its maximum and its
output torque to zero.

2-66

Modeling and Simulating a Complete Car

The Road Speed scope displays the vehicle’s linear velocity in kilometers per
hour (km/h). Note that the braking stops the driveline and the vehicle before
50 seconds — to be exact, at 47.5 seconds.

Drive Ratio
The Drive Ratio scope measures the effective gear ratio of the CR-CR 4-speed
transmission by computing the ratio of the input shaft to the output shaft
angular velocities, respectively. (Open the CR-CR 4-Speed subsystem to locate
the Motion Sensor blocks.) As the transmission shifts through each gear
from 1 to 4, its drive ratio goes down. (The speed ratio is the inverse of the
drive ratio.) After 40 seconds, when the transmission shifts to neutral, the
drive ratio is no longer well defined.

2-67

2 Simple Models

Driveline and Braking Power
Finally, the Power scope displays the total power exerted by the driveline,
measured at the output of the final drive subsystem, and the braking power
exerted by the brake torque necessary to bring the driveline to a stop. The
braking power is negative, as the brake torque opposes the forward motion
of the driveline.

The braking power is zero until 44 seconds, when the brake torque begins to
rise from zero. Both the total and the braking power then quickly peak and
drop to zero as the braking stops the driveline motion in under 4 seconds.

2-68

3

Advanced Methods

This chapter uses driveline examples to explore some of the deeper issues
associated with driveline modeling, as well as powerful techniques that can
extend your driveline simulations.

Using the Simscape™ Editing Mode
(p. 3-2)

Configuring Simscape™ settings

Improving Performance (p. 3-4) Adjusting Simulink® and clutch
settings for driveline models

Analyzing Degrees of Freedom
(p. 3-13)

Identifying driveline degrees of
freedom

Trimming and Linearizing Driveline
Models (p. 3-30)

Using Simulink and SimDriveline™
software to develop linear driveline
approximations

How SimDriveline™ Software Works
(p. 3-47)

How SimDriveline software analyzes
and simulates a driveline model

Generating Code (p. 3-49) Converting driveline models to code

Limitations (p. 3-53) Using compatible Simulink
simulation tools with SimDriveline
models

3 Advanced Methods

Using the Simscape™ Editing Mode

In this section...

“Accessing and Changing the Simscape™ Configuration Parameters” on
page 3-2

“Editing Block Parameters in Restricted Mode” on page 3-3

Accessing and Changing the Simscape™
Configuration Parameters
You choose an editing mode at the Simscape node of a model’s Configuration
Parameters dialog. In the Editing area, use the Editing Mode pull-down
menu to switch between Full and Restricted. The default is Full.

• The Full mode allows you to open, simulate, change, and save models
that contain SimDriveline™ blocks, without restriction. It requires the
SimDriveline product to be installed and a SimDriveline license.

• The Restricted mode allows you to open, simulate, and save models that
contain SimDriveline blocks, without a SimDriveline license, as long as the
SimDriveline product is installed. In this mode, you can also change a
limited set of SimDriveline block dialog parameters.

For more information about Simscape™ editing modes, see the Simscape
documentation.

3-2

Using the Simscape™ Editing Mode

Simulink® Configuration Parameters Dialog (Simscape™ Node Shown)

Editing Block Parameters in Restricted Mode
When you open a SimDriveline model in Restricted editing mode, you cannot
change certain block parameters in the block dialogs. The general editing
rules for Restricted mode are:

• You can edit dialog fields that contain numerical values or variables. (Some
fields are also enabled or disabled by check box settings in their block
dialogs.)

• You cannot change pull-down menu settings.

• You cannot change check box selections. (Note that check box settings can
enable or disable certain fields, independently of the editing mode.)

Exceptions to the Restricted Editing Mode Rules
The Driveline Environment and Controllable Friction Clutch block dialogs
contain exceptions to these rules. See their block reference pages for these
exceptions.

3-3

3 Advanced Methods

Improving Performance

In this section...

“Simulating Drivelines within the Simulink® Environment” on page 3-4

“Increasing Accuracy and Speed” on page 3-4

“Optimizing Clutch Mode Changes and Fixed-Step Solvers” on page 3-7

“Troubleshooting Simulation Errors” on page 3-10

Simulating Drivelines within the Simulink®

Environment
SimDriveline™ models use the Simulink® solver suite, and many of your
choices for these solvers and their settings are no different for driveline
simulations than they are for general Simulink models. See the Simulink
documentation for a general discussion.

This section examines issues specific to simulating driveline systems. The
most important are the dynamical discontinuities caused by the locking and
unlocking of clutches.

Increasing Accuracy and Speed
Once you have chosen a solver for your driveline system, your most important
solver choices are step size and tolerance. Assume a fixed simulation time. The
real time or computational cost the model needs to finish is less if you demand
less accuracy of the simulation and more if you demand more accuracy. The
fundamental tradeoff in numerical simulation is speed versus accuracy. The
step size and tolerance control this tradeoff. A special case of this tradeoff
occurs with “stiff” systems.

Mode changes associated with clutches require further consideration if you
use fixed-step solvers. See “Optimizing Clutch Mode Changes and Fixed-Step
Solvers” on page 3-7.

3-4

file:///B:/matlab/doc/src/toolbox/physmod/simulink/simulink_product_page.html
file:///B:/matlab/doc/src/toolbox/physmod/simulink/simulink_product_page.html

Improving Performance

Variable- Versus Fixed-Step Solvers
Variable-step solvers are the typical default. A variable-step solver
automatically adjusts its step size as it moves forward in time to adapt to how
well the solution is converging. You control the accuracy and speed of the
variable-step solution by adjusting the solver tolerance. You can also limit the
minimum and maximum step size in a variable-step solver, but you should
change these settings only after trying other approaches.

Fixed-step solvers are necessary if you are generating a code version of your
model. A typical application in this case is a hardware-in-the-loop simulation.
With a fixed-step solver, you can adjust the step size directly and control the
accuracy and speed of your simulation.

Solver Choice and Settings: Impact on Accuracy, Speed, and
Clutches
Larger tolerances or step sizes result in less simulation accuracy but, in
general, greater speed. If a system undergoes sudden, rapid changes, larger
tolerances or step size can cause major inaccuracies. Consider reducing the
tolerances or the step size if your simulation:

• Is not accurate enough

• Exhibits abrupt discontinuities in driveline states (velocities)

• Reaches the minimum step size allowed without converging

The locking and unlocking of clutches induce sudden changes in the driveline
dynamics and might require you to reduce the tolerances or the step size.
You should set the variable-step solver tolerance or the fixed-step solver step
size to the smallest value you can that produces an acceptable simulation
speed (not too slow).

For a further discussion of how to simulate clutch mode changes accurately
with fixed-step solvers, see “Optimizing Clutch Mode Changes and Fixed-Step
Solvers” on page 3-7.

This table summarizes the effect and pitfalls of changing tolerances or step
size on accuracy and speed, with attention to the effect on clutch simulation.

3-5

3 Advanced Methods

AdjustmentSolver
Type and
Setting

Effect
on
Accuracy

Effect
on
Speed

Effect on Clutch Simulation

Variable-step:
tolerances

Reduce

Fixed-step:
step size

Increases Reduces Improves resolution and
simulation of abrupt locking and
unlocking

Variable-step:
tolerances

Increase

Fixed-step:
step size

Reduces Increases Degrades resolution and
simulation of abrupt locking and
unlocking

Solving Stiff Drivelines
A stiff system has several intrinsic time scales of very different magnitudes.
These contrasting time scales result from widely different dynamics of
coupled degrees of freedom in the system, from the contrast between initial
conditions and later evolution, or both. These time scales can change during
the simulation.

Generally, drivelines are not stiff systems, with one broad class of exceptions.
While the internal dynamics of a driveline is typically not stiff, its coupling
to its external load — the wheel-tire-road load, in the case of an automobile
— is often stiff. (A tire is “stiff” in responding slowly to imposed forces and
experiencing slip. It also has a broad range of frequency responses.) For
example, driving and road conditions typically change over seconds or tens
of seconds. However, the internal changes of an automobile’s drive system
can change over fractions of a second, especially if clutch mode changes and
braking are at work. In addition, clutch mode changes create dynamical
discontinuities. “Optimizing Clutch Mode Changes and Fixed-Step Solvers”
on page 3-7 discusses these dynamical discontinuities further.

Regular solvers can have difficulty accurately simulating such systems. The
Simulink solver suite contains a set of variable-step solvers designed to solve
stiff systems. If you are simulating a stiff driveline with a variable-step solver
and getting unsatisfactory results, consider:

3-6

Improving Performance

• Reducing the tolerances. This adjustment makes the simulation run more
slowly.

• Using a stiff variable-step solver.

If you are simulating a stiff driveline with a fixed-step solver and getting
unacceptable performance, try:

• Reducing the step size. This makes the simulation run more slowly.

• Using the Simulink ode14x solver.

Reference

[1] Moler, C. B., Numerical Computing with MATLAB, Philadelphia, Society
for Industrial and Applied Mathematics, 2004, Chapter 7.

Optimizing Clutch Mode Changes and Fixed-Step
Solvers
The discontinuities associated with the locking and unlocking of clutches
can create significant obstacles to accurate SimDriveline simulation if you
are using a fixed-step solver.

• Mode changes cause the number and nature of the degrees of freedom
of the system to change during the simulation. See “Analyzing Degrees
of Freedom” on page 3-13.

• Because clutch mode changes are idealized events, they cause the system’s
dynamics (torques) to change abruptly, as static and kinetic friction switch
roles. The switch occurs when one or more clutch pressures rises high
enough to induce locking or falls low enough to induce unlocking.

• In the default mode setting, mode iteration determines when clutches lock
and unlock. Mode iteration consists of suspending the simulation time
steps and repeatedly testing the locking and unlocking conditions for all
the clutches simultaneously. You can turn this mode iteration off.

• A fixed-step solver, unlike a variable-step solver, cannot adaptively reduce
its step size to better resolve the system dynamics when clutches undergo
mode changes. Instead, you need to make other changes to your model
to compensate.

3-7

3 Advanced Methods

Smoothing and Offsetting Clutch Pressure Control Signals
You exert dynamic control on the locking and unlocking of clutches through
their input clutch pressure signals. The simplest way to force a locking
is to abruptly change a clutch pressure from zero to some predetermined
value. You can then force an unlocking by abruptly changing the clutch
pressure back to zero. Such abrupt clutch pressure changes are not realistic,
as discussed in “Shaping Realistic Clutch Pressure Signals” on page 2-51.
The best solution is to model a full clutch actuator. However, you can use
simplified models instead of a complex clutch simulation.

The important criterion is to make sure the clutch pressure signal rises and
falls smoothly and not suddenly. The Simulink “Sources” library provides
many ways to create such signals. You can also reshape existing signals using
blocks such as State-Space and Transfer Fcn.

These demo models illustrate smoothed clutch pressure signals:

• drive_sclutch

• drive_full_car

• drive_vehicle

Staggering Multiple Clutch Signals. In multiclutch systems
(transmissions) where multiple clutches lock and unlock together, you can
further optimize your simulation by slightly staggering the clutch pressure
signal changes. Slightly offset the rise or fall of each clutch pressure from the
others in time, so that the clutches changing their modes together do not
experience the dynamical discontinuities simultaneously.

Adjusting Clutch Parameters
You can adjust internal parameters within each Controllable Friction Clutch
block to control when and how it locks and unlocks.

Changing the Pressure Threshold. The pressure signal coming into a
clutch is dimensionless and normalized to 1 for a specified physical friction
torque. You can also specify a pressure threshold Pth. This threshold imposes
a cutoff on the clutch pressure such that the effective controlling pressure is P
– Pth rather than P. If P < Pth, no pressure at all is applied.

3-8

Improving Performance

Raising the threshold makes it harder for the clutch to engage. If you find a
clutch in your simulation is engaging too easily, consider raising its pressure
threshold. If the clutch has difficulty engaging, consider lowering the pressure
threshold.

Changing the Velocity Tolerance. Each clutch has a velocity tolerance ωTol
that controls when the clutch locks or unlocks.

• A clutch locks if the relative shaft velocity ω lies in the range –ωTol < ω< ωTol.

• A clutch unlocks if the virtual velocity ω, calculated while the clutch is
locked but subject to external torques, lies outside the range –ωTol < ω< ωTol.

In default operation, the solver settings determine a value for ωTol. But you
can also specify an ωTol value.

If the clutch is locking too easily, consider reducing the velocity tolerance. If
the clutch has difficulty locking, consider increasing the velocity tolerance.

Adjusting Solvers for Clutch Mode Changes
The Simulink documentation discusses the adjustment of the Simulink
solvers in general.

With locking and unlocking clutches in your driveline simulation, the most
critical mistake with Simulink solvers to avoid is excessively loose solver
accuracy. If the variable-step tolerances are too large, the solver finds it
difficult or impossible to accurately track the dynamical change associated
with the change of friction torques acting on the driveline. If the fixed step
size is too large, the solver cannot accurately resolve abrupt changes such
as clutch lockings and unlockings.

If you encounter convergence failures or abrupt driveline state (velocity)
changes at or around the instant of clutch mode changes, consider reducing
the solver tolerances for a variable-step solver and the step size for a
fixed-step solver.

3-9

file:///B:/matlab/doc/src/toolbox/physmod/simulink/simulink_product_page.html

3 Advanced Methods

Controlling Mode Iteration
In the default mode, the simulation suspends time-based steps and repeatedly
tests if the clutches of your model should lock or unlock. This algebraic loop
constitutes mode iteration.

You can turn off mode iteration for an entire driveline through its Driveline
Environment dialog. The effect of turning mode iteration off is to spread the
mode change calculation over multiple time steps, instead of concentrating
it all at one time step. This change typically makes the simulation run
somewhat faster but with some loss of accuracy.

With fixed-step solvers and in the generated code versions of SimDriveline
models, mode iteration is disabled automatically. See the Driveline
Environment and Controllable Friction Clutch reference pages for more
details. See “Generating Code” on page 3-49 to learn more about generating
code from SimDriveline models.

Reference

[1] Higham, D. J., and Higham, N. J., MATLAB Guide, Philadelphia, Society
for Industrial and Applied Mathematics, 2000, Chapter 12.

Troubleshooting Simulation Errors
A variety of errors can cause your SimDriveline simulation to stop before
completion. Some of these errors arise from unphysical motions, actuations,
and configurations of the driveline itself.

Overconstrained and Conflicting Degrees of Freedom
Analyzing and counting the driveline degrees of freedom (DoFs) are often
essential to fixing simulation errors. For more about driveline DoFs, see
“Analyzing Degrees of Freedom” on page 3-13.

To run successfully, your driveline simulation must, throughout the
simulation, have a positive number of independent DoFs. Furthermore, the
model’s DoFs must not conflict with each other.

3-10

Improving Performance

If you encounter a simulation error where the driveline cannot move, check
to see whether the number of independent DoFs is positive. If NDoF is not
positive, you should:

• Remove one or more constraining blocks, such as Gears, Clutches, or
Housings

• Remove one or more Motion Actuator blocks

Try one or both of these steps repeatedly until you locate the origin(s) of the
simulation failure and make NDoF positive.

Consider also whether two or more DoFs are in conflict. For example, check
whether two Motion Actuators are trying to move a single DoF in two
different ways. Such a configuration creates a motion conflict and leads to a
simulation error.

Clutch and Transmission Errors
Faulty clutch and transmission configurations generate many driveline
motion failures and usually arise from DoF conflicts and errors. Clutches
impose conditional or dynamic constraints; see “Constrained Degrees of
Freedom” on page 3-18 in “Analyzing Degrees of Freedom” on page 3-13.

To avoid or cure such problems, you should pay especially close attention to
the collective mode state of your clutches, including clutches occurring inside
transmission subsystems. The key to avoiding errors with transmissions is
to work out and implement a complete and consistent clutch schedule. See
“Optimizing Clutch Mode Changes and Fixed-Step Solvers” on page 3-7 and
“Combining Clutches and Gears into Transmissions” on page 2-36.

It is easy to make these mistakes:

• Locking too many clutches simultaneously, leading to redundant dynamic
constraints and overconstrained (not enough) DoFs.

• Locking conflicts among clutches, leading to nonredundant but still
conflicting constraints.

Example: Locking one clutch locks one driveline axis to another. You could
also lock the first driveline axis simultaneously to a third axis with another

3-11

3 Advanced Methods

clutch. If the second and third axes cannot turn at the same velocity, these
DoFs are in conflict.

• Locking too few clutches simultaneously. Strictly speaking, this error does
not overconstrain DoFs or put them in conflict. However, it typically puts a
transmission into a state where it cannot transmit any torque or motion.

Inconsistent Initial Conditions
Like Motion Actuators, Initial Condition actuators can also cause motion
conflicts. Unlike Motion Actuators, they do not impose constraints or remove
DoFs from the driveline, because they act only at the start of the simulation.
However, if you configure them incorrectly, Initial Condition actuators can
cause errors when you begin the simulation.

• Initial Condition actuators can conflict with one another.

Example: Suppose you couple two driveline axes through a Gear with
a gear ratio of 2. The base axis must spin twice as fast as the follower,
in the same direction. If you actuate the base with an initial velocity,
and the follower cannot respond with half that velocity at the start of the
simulation, the simulation stops with an error.

• Initial Condition actuators can conflict with Motion Actuators. When the
simulation starts, the velocity signal controlling a Motion Actuator and the
initial velocity value specified by the Initial Condition actuator must agree,
if they act on the same DoF. Analogous requirements hold for velocities
transformed by gear couplings.

Regardless of how you set the initial conditions of your driveline axes, the
complete set of initial conditions must be consistent with itself. Driveline
connection lines satisfying angular velocity constraints (e.g., branched lines,
lines in closed loops) must have the same initial angular velocities.

3-12

Analyzing Degrees of Freedom

Analyzing Degrees of Freedom

In this section...

“About Driveline Degrees of Freedom and Constraints” on page 3-13

“Identifying Degrees of Freedom” on page 3-14

“Fundamental Degrees of Freedom” on page 3-14

“Connected Degrees of Freedom” on page 3-17

“Constrained Degrees of Freedom” on page 3-18

“Actuating, Sensing, and Terminating Degrees of Freedom” on page 3-22

“Counting Independent Degrees of Freedom” on page 3-24

“Counting Degrees of Freedom in a Simple Driveline with a Clutch” on
page 3-25

About Driveline Degrees of Freedom and Constraints
Identifying rotational degrees of freedom is important for building and
analyzing a driveline, particularly a complex system with many constraints
and external actuations. Simulink® represents driveline DoFs as states,
among all states of a model, including the pure Simulink states. See “Finding
and Using Driveline States” on page 3-33 for more about states and how they
are related to DoFs.

This section discusses how to identify driveline DoFs, take constraints into
account, and extract the true or independent DoFs from a complete driveline
diagram. It includes these basic steps:

• The basic elements of a driveline diagram:

- Connection lines

- Dynamic elements and internal torques

- Constraints

• Sensors and actuators

- Importing and exporting information into and from your driveline

- Terminating DoFs

3-13

3 Advanced Methods

With these pieces, you can enumerate all the DoFs of any driveline. The
section closes with an example of how to do this.

Identifying Degrees of Freedom
In a SimDriveline™ model, all mechanical motions are rotational. Because
absolute angles are not used in SimDriveline software, it is simplest to
identify a driveline degree of freedom (DoF) with an angular velocity. (Some
blocks use the relative angle between two driveline shafts to determine the
torques generated by internal driveline dynamic elements.) A DoF represents
a single, distinct angular velocity. Each DoF responds to the torques acting
on the inertias making up the driveline. Integrating Newton’s equations of
rotational motion determines the angular motions. In fundamental terms,
mechanical DoFs are properties of rotating inertias. It is consistent and
simpler to identify a single SimDriveline DoF as a driveline axis (idealized
driveshaft) with its connected inertias, because the inertias are rigidly
attached to their idealized shaft.

Thus, to identify and count DoFs in a driveline, you need to look at a
SimDriveline diagram starting with its Physical Modeling driveline
connection lines first, before considering its blocks. Driveline blocks modify
the DoFs represented by connection lines by

• Imposing torques that act relatively between driveline axes

• Adding constraints among the driveline axes

• Imposing externally actuated torques and motions

Fundamental Degrees of Freedom
The basic unit of driveline motion is the degree of freedom (DoF) represented
by an unbroken driveline connection line. Such lines represent idealized
massless and perfectly rigid driveshafts. Rotating bodies with rotational
inertias, represented by Inertia blocks, are rigidly attached to these lines and
rotate with the axes.

Driveline Axes as Fundamental Degrees of Freedom
A driveline connection line anchored by driveline connector ports represents
an idealized driveline axis. The connection line enforces the constraint that
the two connected driveline components rotate at the same angular velocity.

3-14

Analyzing Degrees of Freedom

You measure the angular velocity of an axis with a Motion Sensor block. For
the SimDriveline analysis of a single axis, only angular velocity is important.
The absolute angle of an axis is internally undefined.

Measuring Driveline Axis Motion with a Motion Sensor

Defining Relative and Absolute Angles. Relative angle is sometimes
necessary to compute internally generated torques between pairs of axes
(see “Connected Degrees of Freedom” on page 3-17). To determine a relative
angle, the block integrates the relative angular velocity of the pair of axes
and adds the result to the initial relative angle that you specify in the cases
where it is needed.

You can define an absolute angle of rotation for a single axis only when you
measure its motion with a Motion Sensor block. The sensor defines the
absolute angle by integrating the angular velocity of the axis and adding an

3-15

3 Advanced Methods

arbitrary absolute reference angle that you provide in the Motion Sensor
dialog.

Rigidly Rotating Inertias Attached to Driveline Axes
By itself, a driveline connection line represents a single DoF. You cannot
subject this DoF to any torques, because it lacks rotational inertia. The other
basic element needed to construct a functioning driveline model is one or
more Inertia blocks. In a real mechanical system, the spinning bodies carry
both inertia and DoFs. SimDriveline spinning bodies are rigidly attached to
a driveline axis. It is simpler to take the equivalent point of view that the
driveline axis is the fundamental DoF and the bodies carry only inertia.

You attach Inertias to driveline connection lines by branching the lines.
The attached inertias are subject to whatever torque is transmitted by the
connection line, which imposes the constraint that everything attached to a
single line must be spinning at the same rate.

Driveline Axis Branching Rules and Constraints
You can branch driveline connection lines. You can only connect the end of
any branch of a driveline connection line to a driveline connector port . All
driveline components connected to the ends of a set of branched lines rotate
at the same angular velocity. A set of unbroken, branched connection lines
represents a single DoF.

3-16

Analyzing Degrees of Freedom

Branched Connection Lines and Angular Velocity Constraints

Connected Degrees of Freedom
You can connect two independent driveline axes, representing two
independent degrees of freedom (DoFs), by an internal dynamic element. A
dynamic element generates a relative torque from the relative angle and/or
motion of the two axes. This relative torque acts between the two axes, which
remain independent DoFs and which transmit the relative torque (with equal
magnitude and opposite sign on the base and follower axes) to their respective
attached inertias.

Dynamic Elements and Internal Torque Generation
The Dynamics Elements library contains blocks representing driveline
elements that generate internal torques. (See “Dynamic Elements” on page
4-3.) A single relative torque is applied with positive sign to the follower (F)
axis and negative sign to the base (B) axis.

3-17

3 Advanced Methods

• Hard Stop and Torsional Spring-Damper generate spring-like and damping
torques acting on the driveline axes connected to them. These torques are a
function of the relative angle and angular velocity of the two axes.

• Torque Converter generates a viscous torque acting on the driveline axes
connected to it. This torque is a function of the relative angular velocity of
the two axes. In normal operation (forward power flow), the impeller (I) is
equivalent to the base (B), and the turbine (T) to the follower (F).

Clutches and Conditional Connections
A clutch is a conditional or dynamic constraint.

A clutch, if unlocked, also connects two driveline axes and can impose a
relative torque between them, leaving the two axes independent. The
unlocked clutch is either completely unengaged, imposing no torque at all,
or engaged, imposing kinetic friction as a function of the relative velocity of
the two connected axes. The Controllable Friction Clutch block models such
a clutch.

If a clutch locks, applying only static friction between the two connected axes,
the two axes are no longer independent. Instead, they act as a single axis,
spinning at the same rate. See “Constrained Degrees of Freedom” on page
3-18.

Constrained Degrees of Freedom
Certain driveline elements couple driveline axes in such a way as to eliminate
their freedom to move independently. Such elements impose constraints on
the motions of the connected axes. A constrained axis is no longer independent
of other axes and does not count toward the total net or independent motions
of the driveline. Such constraints remove independent degrees of freedom
(DoFs) from the system.

3-18

Analyzing Degrees of Freedom

Not all constraints are independent. Closing branched connection lines into
loops makes some of the constraints contained within the loops redundant.
The number of effective or independent constraints is the number of
constraints arising from blocks minus the number of independent closed
driveline connection line loops.

Except for clutches, driveline constraints are unconditional or static
constraints, that is, unchanging over the simulation. Clutches impose
conditional or dynamic constraints.

Locking a Driveline Axis
Connecting a driveline connection line to a Housing block freezes the motion
of the corresponding driveline axis. It cannot move, and its angular velocity is
constrained to be zero during a simulation. Such an axis has no associated
independent DoF.

Locking Two Driveline Axes Together with a Clutch
A locked clutch, as long as the conditions for locking are valid, constrains the
two connected driveline axes to spin together. The two axes remain distinct,
but only one represents an independent DoF. The other is dependent. See
Controllable Friction Clutch for more details.

3-19

3 Advanced Methods

An unlocked clutch, even if it continues to apply a relative kinetic friction
torque between the axes, no longer imposes a constraint. Instead, it acts as a
dynamic element. See “Connected Degrees of Freedom” on page 3-17.

Coupling Driveline Axes with Gears
A gear coupling between two or more driveline axes reduces the independent
DoFs of the driveline by imposing constraints. The nature of those constraints
depends on the gear being used. Gear blocks with two connected axes impose
one such constraint and reduce the two axes to a single independent DoF.

Multiaxis gears impose more than one constraint. For example, a planetary
gear imposes two constraints on three axes, reducing the axes to one
independent DoF. (This count does not include the fourth, internal DoF, the
planetary wheel, which is not connected to an axis.)

See “Gears” on page 4-2 in the block reference for more examples of gear
constraints.

3-20

Analyzing Degrees of Freedom

Closed Loops, Effective Constraints, and Constraint Consistency
The actual constraint count used to determine the number of DoFs is the
number of effective or independent constraints. You must take special care
in counting constraints in a driveline diagram when connection lines form
closed loops. The presence of closed loops in a diagram reduces the effective
constraint count by rendering some of the constraints redundant:

Number of independent constraints = Number of constraints from blocks –
Number of independent loops

You can reliably count the number of independent loops by counting the
fundamental loops. Fundamental loops have no subloops. You can trace a
fundamental loop with only one path. By counting only fundamental loops,
you avoid overcounting loops that overlap.

For example, this diagram clearly has two independent loops.

In this diagram, you can draw three loops: two inner loops, left and right, and
the outer loop. The outer loop encompasses both inner loops.

3-21

3 Advanced Methods

There are two independent loops in this diagram, because only two are
fundamental. The outer loop is not fundamental.

Consistency of Constraints. A closed loop renders redundant one of
the constraints contained within it as long as all the angular velocities
constrained by line branchings are equal over the whole loop. (See “Driveline
Axis Branching Rules and Constraints” on page 3-16.) The angular velocities
not directly connected by lines must also be consistent if, for example, they
are transferred through gears.

If the angular velocities along a closed loop cannot be made consistent, the
driveline is overconstrained and cannot move.

Actuating, Sensing, and Terminating Degrees of
Freedom
You can use SimDriveline blocks with only one driveline connector port to
originate and/or terminate degrees of freedom (DoFs) because they can end
a driveline connection line. Such blocks include:

• Driveline Environment

• Inertia

• Housing

3-22

Analyzing Degrees of Freedom

• Sensors and Actuators (see “Sensors & Actuators” on page 2-6), except
Torque Sensor

• Vehicle Components (see “Vehicle Components” on page 2-6) such as Tire
and Engines that use sensors and actuators in a subsystem

These blocks do not have to end a connection line.

They can instead be branched like this:

Terminating a connection line does not actually create or destroy a DoF,
of course, but it does limit the DoF. If the termination is an actuator, the
termination can modify the DoFs of the driveline. On the other hand, sensors
have no effect on driveline DoFs.

Directionality, Actuating, and Sensing
Driveline connection lines have no inherent directionality. The direction
of motion and torque flow is determined by the driveline dynamics once
you simulate. You should contrast this with the inherent directionality of
Simulink ports > and signal lines.

Although driveline connection lines are nondirectional, directionality is
implicitly introduced into a driveline model when you attach actuator blocks
to the diagram (see “Sensors & Actuators” on page 2-6), because these blocks
interface pure SimDriveline blocks with the rest of Simulink. The actuator’s
effect on the driveline is determined by the (signed) Simulink input signal
entering on one side.

The motion that results from the driveline simulation in turn determines the
sign of the Simulink output signals that emerge from sensor blocks.

3-23

3 Advanced Methods

The Effect of Torque Actuation on Degrees of Freedom
Connecting a Torque Actuator to a driveline applies the torque specified by
a Simulink input signal to the driveline. Such an actuation has no effect on
the number of system DoFs. The driveline axes transmit the torque to their
connected Inertias, and the driveline is free to respond to the imposed torques.
The motion is simulated by integrating the driveline accelerations (a result of
the imposed torques) to obtain the driveline velocities.

The Effect of Motion Actuation on Degrees of Freedom
Connecting a Motion Actuator to a driveline axis removes the freedom of
that axis to respond to torques and instead specifies the axis motion during
the simulation from the actuator’s Simulink input signal. Motion actuation,
unlike torque actuation, removes an independent DoF from the system.

Counting Independent Degrees of Freedom
To determine the number of independent degrees of freedom (DoFs) in your
driveline,

1 Count all the continuous, unbroken driveline connection lines (lumping
together connected sets of branched lines) in the SimDriveline portion of
your model diagram. Call the total of such lines NCL.

These lines connect two driveline connector ports or terminate on one
driveline connector port , as discussed in “Fundamental Degrees of
Freedom” on page 3-14 and “Actuating, Sensing, and Terminating Degrees
of Freedom” on page 3-22.

2 Count all the constraints arising from blocks that impose constraints on
their connected driveline axes. Call the total of such constraints Nbconstr.

In most cases, each such block imposes one constraint, but complex gears
impose more than one. See “Constrained Degrees of Freedom” on page
3-18 for details.

3 Count the number of independent loops Nloop. The effective number of
constraints is Nconstr = Nbconstr – Nloop. Refer to “Closed Loops, Effective
Constraints, and Constraint Consistency” on page 3-21 for more
information.

3-24

Analyzing Degrees of Freedom

4 Count all the motion actuations in your driveline, by counting each Motion
Actuator block. Consult the preceding section, “Actuating, Sensing, and
Terminating Degrees of Freedom” on page 3-22, for further discussion. Call
the total of such motion actuations Nmact.

The number NDoF of independent DoFs in your driveline is

NDoF = NCL – Nconstr – Nmact = NCL – [Nbconstr – Nloop] – Nmact

A necessary (although not sufficient) condition for driveline motion and
successful driveline simulation is that NDoF be positive.

Conditional Degrees of Freedom with Clutches
Unlike other driveline components, clutches can undergo a discrete mode
change during the course of a simulation. The number of independent DoFs of
a driveline is not, in general, constant during its motion. Each mode change of
one or more clutches changes the independent DoF count. Different collective
states of a driveline’s clutches, taken as a whole, can have different total
net DoFs. To understand a driveline completely, you must examine each
possible collective state of its clutch modes to identify its independent DoFs
and possibly invalid configurations.

See “Troubleshooting Simulation Errors” on page 3-10 and “Combining
Clutches and Gears into Transmissions” on page 2-36.

Counting Degrees of Freedom in a Simple Driveline
with a Clutch
Consider the simple transmission model drive_strans_ideal.

3-25

3 Advanced Methods

Simple Transmission

This system has five apparent DoFs, represented by these driveline axes:

• Branched axis with Inertia1

• Branched axis with Inertia2

• Axis connecting the Hi Gear Clutch to Simple Gear 2:1

• Axis connecting the Lo Gear Clutch to Simple Gear 5:1

• Axis connecting the Brake Clutch to the Housing

There is an apparent closed loop formed by the Gears and Gear Clutches. This
loop is real only if both Gear Clutches are locked.

The actual number of independent DoFs depends on the state of the clutches.
The model has no Motion Actuators, so we need consider only Gears and
Clutches as constraints.

3-26

Analyzing Degrees of Freedom

• The two Gears are always acting, thus yielding two ever-present
constraints.

• The fifth axis is always connected to the Housing. These three constraints
reduce five DoFs to two.

Now consider the clutches.

• Consider first the case where the Brake Clutch is disabled (free).

- If both Hi Gear Clutch and Lo Gear Clutch are unlocked, the system has
two independent DoFs, essentially one on the left of the Gear Clutches
and the other between the Gear Clutches and the Brake Clutch.

- If one of these Gear Clutches is locked, the additional constraint reduces
the system to one independent DoF, essentially everything to the left of
the Brake Clutch. (The clutch control schedule is set up to prevent both
of these clutches from being locked at the same time.)

• If the Brake Clutch is enabled, then the clutch control schedule keeps the
two Gear Clutches disabled.

- If the Brake Clutch is unlocked, the driveline has two independent DoFs,
the same two as above: essentially, to the left of the Gear Clutches and
between the Gear Clutches and the Brake Clutch.

- If the Brake Clutch is locked, the system is reduced to one DoF,
essentially to the left of the Gear Clutches. Everything to the right of the
Gear Clutches is locked to the Housing in this case.

This table and abstract diagram summarize the possibilities available in
this model.

Brake
Enabling

Clutch Locking Independent DoFs

Both Gear Clutches
unlocked

Two: On the left and on the right of
the Gear Clutches

Brake
disabled

One Gear Clutch
locked

One: On the left of the Brake Clutch

3-27

3 Advanced Methods

Brake
Enabling

Clutch Locking Independent DoFs

Brake Clutch
unlocked

Two: On the left and on the right of
the Gear Clutches

Brake
enabled

Brake Clutch locked One: On the left of the Gear Clutches

Degrees of Freedom in the Simple Transmission

Possible But Nonphysical Configurations
It is also worth considering possibilities not available in the model because
the clutch schedule design, implemented in the Clutch Control subsystem,
excludes them.

Both Gear Clutches Locked, Brake Clutch Unlocked. This configuration
creates a conflict of DoFs and reduces the independent DoFs to one. The
driveline axis to the right of the Gear Clutches tries to spin at two different
rates, as required by two different gear ratios. Two locked clutches enforce
two additional constraints on the two remaining DoFs, but form a closed loop,
nominally leaving one freedom in the mechanism. Because of the DoF conflict,
attempting to simulate such a configuration leads to a SimDriveline error.

If the two Gears had identical gear ratios, the DoFs would not conflict, and
the simulation would run without error.

3-28

Analyzing Degrees of Freedom

One Gear Clutch Locked, Brake Clutch Locked. This configuration also
creates a conflict of DoFs and yields zero DoFs. The two locked clutches
enforce two additional constraints on the two remaining DoFs and leave no
freedom in the mechanism. In addition, the driveline axis between the Gear
Clutches, driven by the driveline axis to the left, tries to spin but finds itself
locked to the Housing. Attempting to simulate such a configuration leads to
a SimDriveline error.

Both Gear Clutches Locked, Brake Clutch Locked. This configuration is
also overconstrained. Three locked clutches enforce two effective constraints
on the remaining two DoFs (after taking into account the closed loop) and
yield NDoF = 0. In addition, the driveline axis to the right of the Gear Clutches
tries to spin at two different nonzero rates, while at the same time remaining
locked to the Housing, creating two distinct DoF conflicts.

3-29

3 Advanced Methods

Trimming and Linearizing Driveline Models

In this section...

“Trimming, Inverse Dynamics, and Linearization” on page 3-30

“Finding and Using Driveline States” on page 3-33

“Trimming a Driveline with Inverse Dynamics” on page 3-34

“Linearizing a Driveline Model” on page 3-36

“Counting Driveline States in a Full Car” on page 3-37

“Trimming a Full Car to Rest” on page 3-42

“Linearizing a Full Car at Rest” on page 3-44

Trimming, Inverse Dynamics, and Linearization

Note This section assumes some familiarity with advanced Simulink®

modeling techniques.

An important part of analyzing a driveline system is finding stable steady
states of motion and understanding how the driveline responds to small
changes in inputs. Trimming and linearization are the formal steps of such an
analysis. This section explains how to trim and linearize your driveline model
and the related concepts of states and inverse dynamics. It concludes with
three interrelated examples illustrating these points with a car model.

Trimming a driveline means finding a state of motion that satisfies certain
conditions on some combination of the degrees of freedom (DoFs) and their
derivatives. Trimming usually starts with a guess. The solution to the
trimming problem is the trim or operating point.

Linearizing a system means finding the response of the system to small
perturbations in its motion. These perturbations can be small changes
in initial conditions or in the applied torques. Simulink provides a basic
command (among others) for linearization called linmod.

3-30

Trimming and Linearizing Driveline Models

Driveline and Simulink® States
Simulink represents driveline DoFs and other information about a model’s
dynamics with states. Trimming a driveline requires extracting its driveline
states, which are part of the complete set of Simulink states of your model.
Although the number of driveline states in a model is equal to the number of
independent DoFs (with all clutches unlocked), the driveline states in general
are linear combinations of the angular velocities, not the angular velocities
of particular driveline axes. This DoF-to-state transformation is not known
beforehand, so you must trim your driveline without specifying which state
is which.

Caution Simulink and other products based on Simulink and MATLAB
contain trimming commands that require prior state specification; Simulink
itself provides the trim command. Because driveline states can be counted,
but not identified, such state-based trimming methods are difficult to use
with driveline models.

State information is also useful for analyzing a driveline’s inverse dynamics.
Normally, you apply torques to a driveline and then determine the motions.
Inverse dynamics means specifying motions to determine what torques are
needed to produce those motions.

You can extract state and model output data from your simulation by selecting
the appropriate check boxes in the Data Import/Export panel of your
model’s Configuration Parameters dialog. The default state and output
vectors are xout and yout, respectively.

Relation Between Trimming and Linearization
Trimming and linearization are closely intertwined. Trimming a system
leads to a trim or operating point. That configuration of the system is then
often the system trajectory around which you linearize the motion. If, after
linearization, the operating point proves to be unstable, you typically attempt
another trim and locate a different trim point.

3-31

3 Advanced Methods

Role of Discrete Driveline Modes
The collective mode of the driveline is the set of all its clutch modes. If clutch
mode changes are possible, trimming requires determining which clutches are
locked and unlocked, as well as finding the state of continuous motion.

During linearization, simulation starts with the clutch modes you specify and
performs a clutch mode iteration to find a consistent state of all clutches. It
then implements the perturbation of continuous states, holding the clutch
modes fixed.

Inverse Dynamics and Trimming
A typical driveline simulation is based on torque-actuating the driveline
axes, then measuring the resulting motions. This analysis is called forward
dynamics. If you motion-actuate (instead of torque actuating) some parts
of your driveline, those axes and the equivalent states are no longer
independent. There is no point in measuring their angular velocities because
you already specify them.

If you want outputs from these axes, measure instead the torques flowing
along them. Knowing these torques is the starting point of inverse dynamics
analysis.

Trimming involves a mixture of forward and inverse dynamics. You apply
torques to some axes and specified motions to others. You have trimmed the
model once you have determined a desired and consistent driveline motion
state. Knowing its state in that trajectory, you can linearize the model’s
motion.

Relation of Trimming and Linearization to Control Design
A complete driveline system usually consists of the driveline part (the plant)
and a controller that changes the plant state in response to human or
automatic commands. In designing a controller for a driveline, it is essential
to locate stable operating points and analyze the system’s response at those
operating points to small changes in control inputs. These are precisely
trimming and linearization.

These products provide specialized and advanced methods that help you
design controllers with MATLAB and Simulink:

3-32

Trimming and Linearizing Driveline Models

• Control System Toolbox™

• Simulink® Control Design™

In addition, Stateflow® is a powerful tool for designing and analyzing
transitions among discrete states such as those found in clutches and
transmissions.

Finding and Using Driveline States
This section helps you locate and use SimDriveline™ states. See the Simulink
documentation for more about states in general.

See “Counting Driveline States in a Full Car” on page 3-37 for an example.

Relationship of States to Degrees of Freedom
Understanding degrees of freedom (DoFs) in your driveline model is essential
for advanced analysis, simulation, and troubleshooting. (See “Analyzing
Degrees of Freedom” on page 3-13.) Simulink represents these DoFs as part
of the model’s states.

The driveline states are a subset of the model’s total states. You can count the
number of driveline states in your model by counting the independent DoFs
with all clutches unlocked. Both DoFs and states are based on the angular
velocities of the associated axes. See “Analyzing Degrees of Freedom” on page
3-13 for further discussion of DoFs.

The independent DoFs are essentially the unbroken driveline axes or
branched axis groups, as well as axes connected by true constraints like gears.
Axes on either side of a dynamic element are independent. (For the purpose
of identifying states, Simulink treats clutches as dynamic elements, not as
constraints.)

When all clutches are unlocked, the driveline states are all independent.
Once a clutch locks, one of the associated DoFs becomes dependent. The two
associated states become dependent because the two angular velocities are
necessarily equal.

3-33

http://www.mathworks.com/products/control/
http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/stateflow/

3 Advanced Methods

Locating Driveline States in Simulink®

Your driveline model consists of a mixture of SimDriveline and ordinary
Simulink blocks. The model in general has Simulink states associated with
the Simulink blocks. The driveline states of a single driveline system are
associated with the Kinematic subsystem of the Driveline Environment block
of that driveline. You can list all model states with the Simulink model
command:

1 Open a model. In this example, use drive_model.

2 At the command line, enter

[sys,x0,str,ts] = drive_model([],[],[],'sizes');
sys
str

The relevant elements of sys are

• sys(1) = number of continuous states

• sys(3) = number of outputs

• sys(4) = number of inputs

str lists all model states, including the driveline states associated with each
Driveline Environment block.

Trimming a Driveline with Inverse Dynamics
For a specific example of trimming, see “Trimming a Full Car to Rest” on
page 3-42.

Consider trimming a model with a mixture of forward and inverse dynamics.
In this example, the model is called drive_model. Open the model.

Inserting Sensors, Actuators, Scopes, Inports, and Outports
First set up driveline sensors and actuators and model inputs and outputs, as
necessary and desired.

3-34

Trimming and Linearizing Driveline Models

1 Attach Torque Actuators (or the equivalent, such as Engines) to whichever
axes you want to torque-actuate. If you want to measure their resulting
motions, add Motion Sensors as well.

2 Attach Motion Actuators to whichever axes you want to move according to
prior specifications. If you want to measure their resulting torques, add
Torque Sensors as well.

3 For whatever measurements you want to save to your workspace, feed the
corresponding Motion and Torque Sensor output signals to Outport blocks.

4 For any external input signals you need to feed into the model, add Inport
blocks.

If you want to visually examine sensor output, add and connect Scopes as
desired.

Counting the States
Now count the states, inputs, and outputs by using the 'sizes' option in the
model command. See “Finding and Using Driveline States” on page 3-33.

From sys, read the number of states, outputs, and inputs. From str, read
the subset of driveline states.

Configuring and Initializing the Model
Configure the model to extract state and output data.

1 From the Simulation menu, open the Configuration Parameters dialog.
Select the Data Import/Export node.

2 In that panel, under Save to Workspace, select the States and Output
check boxes. The default workspace variables for this data are xout and
yout, respectively.

3 Close the dialog.

Check the model’s blocks to impose the initial conditions as you want them.
If you are feeding input and/or initial state data into the model, check those
values as well.

3-35

3 Advanced Methods

Finding a Trim Point
You can now run your model as needed. Each time you do, for all time steps,
the array xout receives the state values and the array yout receives all the
output values.

1 As necessary, adjust the torque and motion actuators in the model until you
locate the desired motion state. The torques as you impose and measure
them are the torques needed to produce the motion that you see.

2 Once you reach the desired motion state in a simulation, examine the
components of xout, especially those representing the driveline states.

If you want to use this state as a linearization point, extract the state
vector from xout at a time step when the driveline is moving exactly as you
want it to. Store the vector as x0, for example.

Linearizing a Driveline Model
For a specific example, see “Linearizing a Full Car at Rest” on page 3-44.

Consider linearizing a model with the Simulink linmod command. In this
example, the model is called drive_model. If you need to locate a trim point
before linearizing, first see “Trimming a Driveline with Inverse Dynamics”
on page 3-34.

By default, the linmod command extracts linear models of the state space
(A, B, C, D) form. If x is the state vector, u is the input vector, and y is the
output vector, the matrices play the following roles in the linearized state
space dynamics. The order of states, inputs, and outputs is the same in the
linear model as in the full model.

d
dt

A B

C D

x
x u

y x u

= ⋅ + ⋅

= ⋅ + ⋅

Note During linearization, all input signals are held fixed at their values for
the simulation time specified, including the gear ratios specified by Variable
Ratio Gear blocks. The default linearization time is t = 0.

3-36

Trimming and Linearizing Driveline Models

Linearizing at the Null State and Null Inputs
To linearize your model at zero simulation time and the combination x = []
and u = [], enter

[A,B,C,D] = linmod('drive_model');

This approach can produce a trivial state space. A nontrivial state space often
requires nonnull inputs u, at least, and possibly nonnull outputs y as well.

Linearizing at a Predefined State
If you have predefined state and input vectors x0 and u0, you can linearize in
that configuration and at zero simulation time by entering

[A,B,C,D] = linmod('drive_model',x0,u0);

You can save a predefined x0 vector from a trim operation. See “Trimming a
Driveline with Inverse Dynamics” on page 3-34.

A nonnull u0 is often needed to obtain a nontrivial state space.

Other Linearization Options
Consult the command reference for linmod and the Simulink documentation
for complete linearization options.

Caution If you apply explicitly time-dependent motion or torque actuators
to your driveline axes, your model is time dependent. Linearizing at the same
state but at different times leads to different results in that case.

Counting Driveline States in a Full Car
The full car model of “Modeling and Simulating a Complete Car” on page 2-52
serves as an example of degrees of freedom (DoFs) and states. Here you use a
variant version of the model called drive_full_car_trim.

“Finding and Using Driveline States” on page 3-33 discusses state counting
in general. This example is the starting point for the subsequent example,
“Trimming a Full Car to Rest” on page 3-42.

3-37

3 Advanced Methods

Identifying the Degrees of Freedom
First count the independent DoFs of the system. With all clutches unlocked,
the model has four independent driveline DoFs.

1 Open drive_full_car_trim. Three subsystems, Converter with Lockup
Clutch, CR-CR 4-Speed, and Vehicle Load-Wheels-Road-Power Scope, are
part of the driveline system. (There is also a Torque Actuator hidden in
the Gasoline Engine block.)

Full Car Model: Degrees of Freedom

2 Identify the driveline axis running from the Engine to the Converter
subsystem. This is one independent DoF. Then open that subsystem.

3-38

Trimming and Linearizing Driveline Models

Full Car: Converter with Lockup Clutch Subsystem

The Torque Converter introduces a new independent DoF to the right. This
axis then connects to the transmission. Close the Converter subsystem.

3 Open the CR-CR 4-Speed transmission subsystem.

3-39

3 Advanced Methods

Full Car: CR-CR 4-Speed Transmission Subsystem

This subsystem adds six new driveline connection lines. The two Housing
and two complex Gear blocks add six apparent constraints. (The two
Planetary Gear blocks are complex and impose two constraints each.) But
these constraints are embedded into two independent loops, so only 6 – 2
= 4 constraints are independent. Thus the transmission introduces 6 – 4
= 2 new independent DoFs.

Close the transmission subsystem.

4 Look under the Vehicle Load subsystem mask.

3-40

Trimming and Linearizing Driveline Models

Full Car: Vehicle Load Subsystem

With the Forward Gear constraint, there are no new independent DoFs
in this subsystem. Close it.

This model has four independent DoFs with all clutches unlocked:

• The first runs from the Engine to the Torque Converter.

• The second runs from the Torque Converter to the CR-CR 4-Speed
transmission.

• The transmission (in neutral) adds the third and fourth DoFs.

When the Transmission Locks. When you engage the CR-CR 4-Speed
transmission, two of its clutches lock, removing its two independent DoFs
and reducing the total from four to two. They are the engine-to-converter
axis and the converter-to-road axis.

There are still four driveline states, but two become dependent.

When the Lockup Clutch Also Locks. When the transmission is engaged
and the lockup clutch in the Converter subsystem is also locked, only one
independent DoF remains. This DoF is the entire drivetrain from engine
to road.

3-41

3 Advanced Methods

Of the four driveline states, only one is independent.

Finding the States
Now list the model states.

[sys,x0,str,ts] = drive_full_car_trim([],[],[],'sizes');

sys

sys =

10

0

4

0

0

0

2

str

str =

[1x88 char]

'drive_full_car_trim/Clutch Hydraulics/Actuator R Dynamics'

'drive_full_car_trim/Clutch Hydraulics/Actuator A Dynamics'

'drive_full_car_trim/Clutch Hydraulics/Actuator D Dynamics'

'drive_full_car_trim/Clutch Hydraulics/Actuator B Dynamics'

'drive_full_car_trim/Clutch Hydraulics/Actuator C Dynamics'

'drive_full_car_trim/Driveline Environment/Subsystem/Kinematic Block'

'drive_full_car_trim/Driveline Environment/Subsystem/Kinematic Block'

'drive_full_car_trim/Driveline Environment/Subsystem/Kinematic Block'

'drive_full_car_trim/Driveline Environment/Subsystem/Kinematic Block'

The model has a total of 10 states and four outputs. The driveline states
are the last four, associated with the Kinematic subsystem of the Driveline
Environment block.

Trimming a Full Car to Rest
Here you use the variant full car model called drive_full_car_trim to obtain a
trim or operating point. In this example, the car’s operating point is at rest.

“Trimming a Driveline with Inverse Dynamics” on page 3-34 discusses
trimming in general. This example is based on the preceding example,

3-42

Trimming and Linearizing Driveline Models

“Counting Driveline States in a Full Car” on page 3-37, and forms the starting
point for the subsequent example, “Linearizing a Full Car at Rest” on page
3-44.

Configuring the Model for Trimming
Open and examine drive_full_car_trim.

Full Car Model Customized for Trimming

• The Controllable Friction Clutch blocks A and D of the CR-CR 4-Speed
transmission subsystem are set to lock when the simulation starts. Thus
the transmission starts engaged.

• The four driveline degrees of freedom (DoFs) are reduced to two by
transmission locking. The lockup clutch in the Converter with Lockup
Clutch subsystem does not lock.

• The model contains four Motion Sensor and four Outport blocks to capture
the angular velocities of four driveline axes, corresponding to the four
model DoFs. (If you want to measure torques instead, replace Motion
Sensors with Torque Sensor blocks.)

• The Gasoline Engine throttle signal is a Constant block with value 0. Thus
the car runs without any engine power. It starts with a small Torque
Converter impulse and rolls to a stop.

3-43

3 Advanced Methods

• By examining Simulation > Configuration Parameters > Data
Import/Export, you can confirm that the time, model states, and model
outputs are logged to tout, xout, and yout, respectively.

Reading the Model States and Outputs
Examine the simulation data.

1 Open the Road Speed scope and run the model. The simulation stops when
the car reaches rest.

2 In your workspace, read the state data from xout and angular velocity data
from yout. Each row of these arrays represents a time step; the columns
are the vector components.

Defining an Operating Point from the State
To linearize the model at the rest state, you need to first define that state. At
the last simulation time step, the car is not exactly at, but very close, to rest.
Save this state as a vector x0 and use it as the linearization point.

1 Determine the number of time steps by examining tout in the workspace
or entering at the command line

length(tout)

2 Define the quasi-rest state in your workspace by extracting the last entry
in xout. At the command line, enter

x0 = xout(length(tout),:);

x0 and each row of xout have ten components, corresponding to the ten states
obtained in “Counting Driveline States in a Full Car” on page 3-37.

Linearizing a Full Car at Rest
Here you use the variant full car model called drive_full_car_trim to linearize
the full car at the operating point of rest.

“Linearizing a Driveline Model” on page 3-36 discusses linearization in
general. This example is based on the previous example, “Trimming a Full Car

3-44

Trimming and Linearizing Driveline Models

to Rest” on page 3-42, which you need to carry out before proceeding here. The
result of that example is a saved linearization point, the quasi-rest state x0.

Creating Model Inputs
To guarantee a nontrivial linearized model, insert at least one model input.
The simplest choice is to convert the Gasoline Engine throttle signal into a
model input.

1 Disconnect the zero Constant block from the Gasoline Engine block.

2 Replace it with an Inport block with Port number set to 1.

Obtaining the Linearized Model
Linearize the model with the linmod command.

1 At the command line, define the input throttle signal by entering

u0 = 0;

2 Then obtain the state space model arrays (A, B, C, D) by entering

[A,B,C,D] = linmod('drive_full_car_trim',x0,u0);

3-45

3 Advanced Methods

linmod carries out a clutch mode iteration first and locks clutches A and D
of the CR-CR 4-Speed transmission subsystem.

There are 10 states (ten components in x), one input (one component in u),
and four outputs (four components in y). (Four of the 10 states are driveline
states.) Thus A is 10-by-10, B is 10-by-1, C is 4-by-10, and D is 4-by-1.

Finding the Minimal Realization of the State Space

Note This step requires Control System Toolbox.

Although there are four apparent driveline DoFs, with the CR-CR
transmission engaged, only two are independent. Thus not all the states of x
are independent, and the state space form (A, B, C, D) contains redundant
information.

Reduce the state space model to its minimal form by entering at the command
line

[a,b,c,d] = minreal(A,B,C,D);
8 states removed.

Of 10 states, state space reduction removes eight, leaving two states,
corresponding to the two independent DoFs. There are still four outputs in y
and one input in u. Thus a is 2-by-2, b is 2-by-1, c is 4-by-2, and d is 4-by-1.

3-46

http://www.mathworks.com/products/control/

How SimDriveline™ Software Works

How SimDriveline™ Software Works

In this section...

“About Driveline Simulation” on page 3-47

“State, Constraint, and Motion Actuation Identification” on page 3-47

“Independent State Selection and Initialization” on page 3-48

“Dependent State Selection and Initialization” on page 3-48

“Torque Analysis and Dynamical Simulation” on page 3-48

“Clutch Mode Iteration” on page 3-48

About Driveline Simulation
This brief overview of how SimDriveline™ software works should help you to
construct models and understand errors. “Troubleshooting Simulation Errors”
on page 3-10 discusses fixing errors.

The driveline simulation sequence has five major phases, described below.
The first three occur before driveline motion actually starts and are explained
more completely in “Analyzing Degrees of Freedom” on page 3-13 and
“Trimming and Linearizing Driveline Models” on page 3-30.

State, Constraint, and Motion Actuation Identification
The overall degrees of freedom (DoFs) of the driveline result from its
connected block diagram and the driveline connection lines that represent
idealized driveshafts. A set of states represents the DoFs, both dependent
and independent.

The full specification of the driveline requires identifying motion actuations
and constraints that reduce the independent DoFs to a set smaller than the
full set of DoFs. Once identified, motion actuations and static constraints
(gears) remain for the entire simulation. Dynamic constraints (clutches)
require additional steps before and during simulation because they can
change. The first step with clutches is to identify those required to be locked
at the start of simulation.

3-47

3 Advanced Methods

Independent State Selection and Initialization
The premotion analysis of states begins with the selection of independent
states, respecting the constraints and motion actuations identified in the
first step and identifying the effective rotational inertia associated with each
state. User-specified initial conditions are then applied to any relevant DoFs.
An initial condition of zero (no motion) is applied to any independent state
without user-specified initial conditions.

Dependent State Selection and Initialization
Of the total set of states, the dependent states are those that remain after
independent states are selected. The initial conditions of the dependent
states then result completely from the constraints, motion actuations, and
independent state initial conditions.

Torque Analysis and Dynamical Simulation
Torques acting on the independent states are identified and applied.
Simulation begins by integrating the rotational equations of motion on the
independent states with these applied torques. The motions of the dependent
states requires no separate torque analysis or dynamics, as they result by
constraints from the independent states and any applied motion actuations.

Clutch Mode Iteration
During simulation, the Controllable Friction Clutch blocks in your model are
checked for lockings and unlockings with zero-crossing analysis. If a locked
clutch meets the criteria for unlocking, or an unlocked clutch the criteria for
locking, the respective clutch modes change. By default, this locking-unlocking
analysis requires non-time-increment steps (algebraic loops).

If one or more clutch constraints change, the overall driveline states have to
be repartitioned into new sets of dependent and independent states. This in
turns requires a partial reinitialization of the driveline, one that preserves the
driveline’s state before the mode change except for that subset of constraints
and states affected by the clutch mode transition.

3-48

Generating Code

Generating Code

In this section...

“About Code Generation from SimDriveline™ Models” on page 3-49

“Using Code-Related Products and Features” on page 3-49

“How SimDriveline™ Code Generation Differs from Simulink®” on page
3-50

“Using Run-Time Parameters in Generated Code” on page 3-51

About Code Generation from SimDriveline™ Models
You can use SimDriveline™ software with Real-Time Workshop® to generate
stand-alone C or C++ code from your driveline models and enhance simulation
speed and portability. Certain Simulink® features also make use of generated
or external code. This section explains code-related tasks you can perform
with your SimDriveline models.

Code versions of SimDriveline models typically require fixed-step Simulink
solvers, which are discussed in “Improving Performance” on page 3-4. Some
SimDriveline features are restricted when you translate a model into code.
See “Limitations” on page 3-53.

Note Code generated from SimDriveline models is intended for rapid
prototyping and hardware-in-the-loop applications. It is not intended for use
as production code in embedded controller applications.

SimDriveline software shares most of the same code generation features as
the Simscape™ product. This section describes code generation features
specific to SimDriveline software. Consult the Simscape documentation for
general information on code generation and Physical Modeling.

Using Code-Related Products and Features
Simulink, Real-Time Workshop, and xPC Target™ software, using several
code-related technologies, enable you to link existing code to your models and
generate code versions of your models.

3-49

3 Advanced Methods

Code-Related Task Component or Feature

Link existing code written in C
or other supported languages to
Simulink models

Simulink S-functions to generate
customized blocks

Speed up Simulink simulations Accelerator mode
Rapid Accelerator mode

Generate stand-alone fixed-step
code from Simulink models

Real-Time Workshop

Generate stand-alone
variable-step code from Simulink
models

Real-Time Workshop Rapid Simulation
Target (RSim)

Convert Simulink model to code
and compile and run it on a target
PC

Real-Time Workshop and xPC Target

Generate a block representing a
Simulink model

S-function Target*

Generate code for designated
models or subsystems

Model Reference Accelerator Mode

* S-function Target is supported with SimDriveline models or subsystems,
but not with Simscape software. Converting a SimDriveline subsystem to an
S-function block allows you to run a model with Simulink alone.

How SimDriveline™ Code Generation Differs from
Simulink®

In general, using the code generated from SimDriveline models is similar
to using code generated from Simscape and normal Simulink models. The
Simscape documentation discusses the differences between code generation in
the Simulink and in Simscape.

Limited Set of SimDriveline™ Tunable Parameters
The major difference between Simscape and SimDriveline code generation is
that some SimDriveline blocks do support a limited set of tunable parameters.
Consult “Using Run-Time Parameters in Generated Code” on page 3-51 and

3-50

Generating Code

“Most SimDriveline™ Parameters Not Tunable” on page 3-54, as well as the
SimDriveline block reference.

Using Run-Time Parameters in Generated Code
When SimDriveline software generates code for a model, it creates a
set of code source and header files. This set includes modelname.c and
modelname_data.c, containing all the model’s run-time parameters. (For
C++, these are .cpp files.) In addition, SimDriveline software generates two
files separately that specify driveline structure and initialization procedures
for the SimDriveline blocks alone.

The modelname.c file contains all the run-time parameters used in the
compiled simulation. To find run-time parameters and change their values,
you need to look in modelname_data.c. Once you change them, recompile the
code to simulate with the new values.

Caution By default, modelname_data.c contains comments that identify
run-time parameters by the names of their parent blocks.

If you disable comments in your code generation, you can no longer identify
run-time parameters in modelname_data.c alone. You also need to examine
the associated header file, modelname.h, to identify the data structure
elements containing the run-time parameters. Once you identify particular
parameters, you can change their values in modelname_data.c.

Changing Run-Time Parameters with the RSim Target
If you generate code from your SimDriveline model using the RSim target,
you have an alternative way to change run-time parameters in your code by
using the Real-Time Workshop rsimgetrtp function. For full information
on rsimgetrtp, enter help rsimgetrtp at the command line and consult
“Running Rapid Simulations” in the Real-Time Workshop User’s Guide.

To use this approach, the block parameters you want to change need to be
entered as workspace variable names in the corresponding blocks. You control
the block values of these parameters by changing the values of the workspace
variables. rsimgetrtp allows you to propagate these changes from your

3-51

3 Advanced Methods

workspace to the code generated from a model without having to regenerate
or recompile the code.

1 Change the values of the MATLAB workspace variables upon which your
run-time parameter values depend.

2 Obtain from rsimgetrtp a data structure appropriate to your model
and containing the new variables. Save it as a MAT-file, for example,
newrtP.mat.

3 Enter modelname -p newrtP.mat at your operating system command line
to run the generated executable with the new parameter values.

Example. Suppose an Inertia block references a workspace variable called
Iner for the value of its inertia. Originally, its value was 1. To change the
value of Iner to 5 in the code generated from its model, enter at the MATLAB
command line:

Iner = 5;
rtP = rsimgetrtp('modelname');
save newrtP.mat rtP;

To run the generated code executable with the new value, enter at your
operating system command prompt

modelname -p newrtP.mat

3-52

Limitations

Limitations

In this section...

“About SimDriveline™ and Simulink® Limitations” on page 3-53

“Continuous Sample Times Required” on page 3-53

“Changing Block Properties at the Command Line” on page 3-53

“Restricted Simulink® Tools” on page 3-53

“Unsupported Simulink® Tool” on page 3-54

“Simulink® Tools Not Compatible with SimDriveline™ Blocks” on page 3-54

“Restrictions with Generated Code” on page 3-55

About SimDriveline™ and Simulink® Limitations
Some Simulink® features and tools either do not work with models containing
SimDriveline™ blocks or work only with restrictions. Others work with
SimDriveline models but only on the normal Simulink blocks in those models.

Continuous Sample Times Required
The sample times of all SimDriveline blocks are always continuous, and you
cannot use them with discrete solvers. You also cannot override the sample
time of a nonvirtual subsystem containing SimDriveline blocks.

Changing Block Properties at the Command Line
Changing the block properties of SimDriveline blocks at the command line
is not recommended.

Restricted Simulink® Tools
Certain Simulink tools are restricted in use with SimDriveline software.

• Enabled subsystems can contain SimDriveline blocks, but the States
when enabling parameter on the subsystem’s Enable Port is always
treated as held, regardless of how you set the States when enabling
pull-down menu in the Enable Port dialog.

3-53

3 Advanced Methods

• Simulink configurable subsystems work with SimDriveline blocks only if
all of the block choices have consistent port signatures.

• For Iterator, Function-Call, Triggered, and While Iterator nonvirtual
subsystems cannot contain SimDriveline blocks.

• SimDriveline software supports Simulink model referencing, with this
restriction:

- A SimDriveline model can be referenced only once by another model.

Unsupported Simulink® Tool
The Simulink Profiler does not work with SimDriveline models.

Simulink® Tools Not Compatible with SimDriveline™
Blocks
Some Simulink tools and features do not work with SimDriveline blocks:

• Execution order tags do not appear on SimDriveline blocks.

• SimDriveline blocks do not invoke user-defined callbacks.

• You cannot set breakpoints on SimDriveline blocks.

• Reusable subsystems cannot contain SimDriveline blocks.

• You cannot place SimDriveline blocks into Atomic Subsystems that are
configured to minimize algebraic loops.

• You cannot use the Simulink Fixed-Point Tool with SimDriveline blocks.

• The Report Generator reports SimDriveline block properties incompletely.

Most SimDriveline™ Parameters Not Tunable
SimDriveline blocks do not support tunable parameters.

Note Some SimDriveline blocks are masked subsystems that contain a
mixture of normal Simulink and fundamental SimDriveline blocks. Normal
Simulink blocks in such masked subsystems do support tunable parameters.

3-54

Limitations

Restrictions with Generated Code
Code generated from models containing SimDriveline blocks has certain
limitations.

Clutch-Related Mode Iteration Disabled
In the default simulation mode, SimDriveline software uses mode iteration
to determine the locking and unlocking of clutches, suspending the
simulation time steps and entering an algebraic loop. Through the Driveline
Environment block, present in each distinct driveline, you can manually
change the simulation mode to turn off mode iteration while running your
Simulink model. In that case, clutch modes are determined over multiple time
steps while the simulation continues. Turning off mode iteration increases
simulation speed somewhat but at the possible cost of accuracy.

In the generated code versions of SimDriveline models, mode iteration is
turned off automatically. Clutch locking and unlocking are determined over
multiple time steps.

Restriction on S-Functions Generated from SimDriveline™
You cannot generate code from a SimDriveline model that itself contains one
or more S-functions generated from other SimDriveline models.

3-55

3 Advanced Methods

3-56

4

Block Reference

Drivelines and Inertias (p. 4-2) Represent drivelines and inertias

Gears (p. 4-2) Couple simple and complex motions

Dynamic Elements (p. 4-3) Generate internal torques

Transmissions (p. 4-3) Combine and control clutches and
gears

Sensors and Actuators (p. 4-4) Initiate, impose, and measure
driveline motions

Vehicle Components (p. 4-4) Represent engines, tires, and
vehicles

Interface Elements (p. 4-5) Interface driveline motion with other
one-dimensional domains in the
Simscape™ environment

Utilities (p. 4-5) Miscellaneous useful blocks

4 Block Reference

Drivelines and Inertias

Driveline Environment Represent driveline environment

Housing Rotationally lock connected driveline
axis and prevent it from turning

Inertia Represent body with rotational
inertia

Shared Environment Connect two driveline components
so that they share same driveline
environment

Gears

Differential Represent differential gear with
specified gear ratio

Dual-Ratio Planetary Represent set of carrier, sun, planet,
and ring gear wheels with specified
ring-planet and planet-sun gear
ratios

Planet-Planet Represent set of carrier, inner planet,
and outer planet gear wheels with
specified planet-planet gear ratio

Planetary Gear Represent set of carrier, sun, planet,
and ring gear wheels with specified
ring-sun gear ratio

Ravigneaux Represent Ravigneaux planetary set
of carrier, sun, planet, and ring gear
wheels with specified ring-sun gear
ratios

Ring-Planet Represent set of carrier, planet,
and ring gear wheels with specified
ring-planet gear ratio

4-2

Dynamic Elements

Simple Gear Represent gear with fixed gear ratio

Variable Ratio Gear Represent gear with controllable,
variable gear ratio

Dynamic Elements

Controllable Friction Clutch Represent friction clutch with kinetic
and static friction and controlled by
pressure signal

Fundamental Friction Clutch Represent friction clutch controlled
by kinetic and upper and lower static
friction signals

Hard Stop Model restriction on relative angular
motion of two driveline axes to free
gap with elastic upper and lower
limits

Torque Converter Transfer torque between two
driveline axes as function of their
relative angular velocity

Torsional Spring-Damper Represent damped torsional spring
torque, with free play gap, acting
between two rotating axes

Transmissions

CR-CR 4-Speed Model CR-CR four-speed
transmission based on two planetary
gear sets

Lepelletier 6-Speed Model six-speed Lepelletier
transmission based on planetary
gear and Ravigneaux gear

4-3

4 Block Reference

Lepelletier 7-Speed Model seven-speed Lepelletier
transmission based on planetary
gear and Ravigneaux gear

Ravigneaux 4-Speed Model Ravigneaux four-speed
transmission based on Ravigneaux
gear

Sensors and Actuators

Initial Condition Set initial angular velocity of
driveline axis to nonzero value

Motion Actuator Actuate driveline axis with specified
motions

Motion Sensor Measure motion of driveline axis

Torque Actuator Actuate driveline axis with specified
torque

Torque Sensor Measure torque transferred along
driveline axis

Vehicle Components

Diesel Engine Model diesel fuel engine with
throttle control, speed governor, and
driveline output

Gasoline Engine Model gasoline fuel engine with
throttle control, speed governor, and
driveline output

4-4

Interface Elements

Longitudinal Vehicle Dynamics Model longitudinal dynamics and
motion of two-axle, four-wheel
vehicle

Tire Model tire dynamics and motion at
end of driveline axis

Interface Elements

Rotational Coupling Connect SimDriveline™ driveline
shaft with Simscape™ mechanical
rotational elements

Utilities

Connection Port Create Physical Modeling connector
port for subsystem

4-5

4 Block Reference

4-6

5

Blocks — Alphabetical List

Connection Port

Purpose Create Physical Modeling connector port for subsystem

Library Utilities

Description The Connection Port block, placed inside a subsystem composed of
SimDriveline™ blocks, creates an open SimDriveline round connector
port on the boundary of the subsystem. Once connected to a
connection line, the port becomes a driveline connector port .

You connect individual SimDriveline blocks and subsystems made of
SimDriveline blocks to one another with SimDriveline connection lines
instead of normal Simulink® signal lines. These are anchored at the
open square driveline connector ports . Subsystems constructed from
SimDriveline blocks automatically have such driveline connector ports.
You can add additional connector ports by adding Connection Port
blocks to your subsystem.

Dialog
Box and
Parameters

Port number
Labels the subsystem connector port created by this block. Each
connector port on the boundary of a single subsystem requires a
unique number as a label. The default value for the first port is 1.

5-2

Connection Port

Port location on parent subsystem
Choose here on which side of the parent subsystem boundary the
port is placed. The choices are Left or Right. The default choice
is Left.

See Also In the Simulink documentation, see Creating Masked Subsystems.

5-3

Controllable Friction Clutch

Purpose Represent friction clutch with kinetic and static friction and controlled
by pressure signal

Library Dynamic Elements

Description A friction clutch transfers torque between two driveline axes by coupling
them with friction. The Controllable Friction Clutch block models a
standard friction clutch with kinetic friction and static (locking) friction
acting on the two axes. The motion is measured as the slip of follower
(F) axis relative to base (B) axis, ω= ωF – ωB.

The clutch requires a dimensionless input pressure signal P that
modulates the applied friction. This signal should be positive or zero. A
signal P less than zero is interpreted as zero.

For More on Clutch Properties and Settings

The Controllable Friction Clutch is based on the Fundamental Friction
Clutch block. See the Fundamental Friction Clutch block reference
page for more about:

• “Clutch Directionality” on page 5-31

• “Clutch States and Transitions” on page 5-32

• “Clutch Mode Iteration” on page 5-33

• “Setting the Clutch Velocity Tolerance” on page 5-34

• “Default Initial State” on page 5-44

• “Manually Locking a Clutch at Simulation Start” on page 5-45

Using Dynamic Element Blocks

Use the blocks of the Dynamic Elements library as a starting point
for vehicle modeling. To see how a Dynamic Element block models a
driveline component, look under the block mask. The blocks of this
library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-4

Controllable Friction Clutch

Dialog
Box and
Parameters

5-5

Controllable Friction Clutch

Directionality
Select Bidirectional or Unidirectional to determine how the
follower axis can turn relative to the base, in both directions
or only in the forward direction, respectively. The default is
Bidirectional.

Number of friction surfaces
Number of friction-generating contact surfaces inside the clutch.
The default is 6.

Effective torque radius
The effective moment arm radius, in meters (m), that determines
the kinetic friction torque inside the clutch. The default is 0.04.

Peak normal force
The maximum force, in newtons (N), normal to the frictional
surfaces in the clutch. This value normalizes the Simulink® input
signal P for clutch pressure and determines the maximum kinetic
friction torque. The default is 1000.

Coefficient of friction table
Dimensionless kinetic friction factor μ as a function of the angular
velocity in tabular form. The table is a matrix whose rows are
vectors of length 2, separated by semicolons. Each two-component
vector specifies a pair of values, an angular velocity ω and a
corresponding μ value, in that order. The simulation automatically
interpolates a cubic spline from these values.

The default matrix is [0 1; 1e8 1], which is a constant μ of value
1. The angular velocity values are in units of radians/second.

Static friction peak factor
Ratio of the static friction limit for clutch locking to the kinetic
friction. The default is 1.1.

Engagement threshold for normalized pressure
Minimum normalized pressure Pth that activates clutch friction. If
the normalized pressure input signal P is less than this threshold,
the clutch applies no friction. The default is 0.

5-6

Controllable Friction Clutch

Use default clutch velocity tolerance from the Driveline
Environment block

Select to require this clutch to use the driveline-wide velocity
tolerance ωTol specified in the Driveline Environment block
connected to the driveline. The default is selected.

If you unselect this check box, you enable the Use automatic
clutch velocity tolerance for variable-step solvers check box
and the Clutch velocity tolerance field (see following).

Clutch velocity tolerance
Sets the minimum angular velocity ωTol above which the clutch
cannot lock. Below this velocity, the clutch can lock. (See
“Simplified Friction Clutch Model” on page 5-9.) The units are
radians/second. The default is 1e-3.

For a fixed-step solver, this clutch always uses this value, if you
do not specify a default velocity tolerance through the Driveline
Environment block.

This field is enabled only if the Use default clutch velocity
tolerance from the Driveline Environment block check box
is unselected.

Use automatic clutch velocity tolerance for variable-step solvers
Select to require this clutch to compute the velocity tolerance ωTol
automatically from solver settings. The default is selected.

This check box is enabled only if the Use default clutch velocity
tolerance from the Driveline Environment block check box
is unselected.

5-7

Controllable Friction Clutch

Start simulation with clutch in locked mode
Select to start the simulation with the clutch already locked. The
default is unselected.

Output clutch slip (S)
Select to make available the Simulink outport for the clutch
slippage signal. The default is unselected.

The clutch slippage is the relative angular velocity ωof the two
coupled driveline axes. The signal measures the clutch slippage
in radians/second.

Output power dissipation (L)
Select to make available the Simulink outport for the power
dissipation signal. The default is unselected.

The signal measures the power, in watts (W), being dissipated by
friction torques applied by the clutch to the driveline axis.

Output clutch mode (M)
Select to make available the Simulink port for the discrete clutch
mode signal. The default is unselected.

The signal value is the sign ±1 of the angular velocity ω of the
follower relative to the base. If the follower and base are locked
and rotate together, the signal value is 0.

Restricted Parameters

When your model is in Restricted editing mode, you can change these
check boxes:

5-8

Controllable Friction Clutch

• Use default clutch velocity tolerance from the Driveline
Environment block

• Use automatic clutch velocity tolerance for variable-step
solvers

These options are exceptions to the Simscape™ editing mode rules.

Simplified
Friction
Clutch
Model

The Controllable Friction Clutch is based on the Fundamental Friction
Clutch. Consult the Fundamental Friction Clutch block reference
page for the complete friction clutch model. This section discusses the
simplified model implemented in the Controllable Friction Clutch.

When you apply a pressure signal above threshold (P ≥ Pth), the
Controllable Friction Clutch block can apply two kinds of friction to the
driveline motion, kinetic and static. The clutch applies kinetic friction
torque only when one driveline axis is spinning relative to the other
driveline axis. The clutch applies static friction torque when the two
driveline axes are locked and spin together. The block iterates through
multistep testing to decide when to lock and unlock the clutch.

Clutch Variable Summary

This table summarizes the clutch variables.

Clutch State Variables

Symbol Definition Significance

ω Relative angular
velocity

ωF – ω B

α Relative angular
acceleration

dω/dt

ωTol Relative angular
velocity tolerance for
clutch locking

See text following

5-9

Controllable Friction Clutch

Clutch State Variables (Continued)

Symbol Definition Significance

P, Pth Normalized clutch
pressure and
threshold

Dimensionless input pressure
applied to clutch discs; threshold
clutch pressure

Pfric Clutch friction
capacity

max[(P – Pth), 0]

reff Effective torque
radius

Effective moment arm of clutch
friction force

μ Kinetic friction
coefficient

Dimensionless coefficient of kinetic
friction of clutch discs, function of ω

τ K Kinetic friction
torque

See text following

τ S Static friction torque
limit

(static friction peak factor)·(kinetic
friction torque for ω→ 0) (See text
following)

Relation to the Fundamental Friction Clutch

Instead of requiring the kinetic and static friction limit torques as input
signals, the Controllable Friction Clutch calculates these from the fixed
clutch parameters and the input normalized pressure signal P.

Kinetic Friction
The kinetic friction torque is a product of five factors:

τ K = μ·(number of friction disks)·(effective torque radius)·
(peak normal force)·Pfric

The effective torque radius reff is the effective radius, measured from the
driveline axis, at which the frictional forces are applied at the frictional
surfaces. It is related to the geometry of the friction disk by

5-10

Controllable Friction Clutch

r
r r

r r
eff

o i

o i
=

−
−

2
3

3 3

2 2

ro and ri are the outer and inner radii, respectively, of the friction disk.

You specify the kinetic friction coefficient μ as a tabulated discrete
function of relative angular velocity ω. This function is assumed to
be symmetric for positive and negative values of the relative angular
velocity, so that you need to specify μ for positive values of ωonly.

The peak normal force is the normal force applied to the frictional
surfaces when the normalized clutch friction capacity signal P – Pth is
one. The pressure signal should be nonnegative. If P is less than Pth,
the clutch applies no friction at all.

Static Friction
The static friction limit is a product of two factors:

τ S = (static friction peak factor)·τ K(ω→ 0)

The block computes the kinetic friction torque with the kinetic friction
coefficient μ interpolated to zero relative angular velocity with a cubic
spline.

The static friction peak factor measures how much larger the static
friction has to be to unlock the clutch, as a ratio to the kinetic friction at
the instant of unlocking, when ω= 0.

The static friction torque limits or range is then defined symmetrically
as:

τ S ≡ τ S
+ = –τ S

–

Wait State: Locking and Unlocking
The Wait state of the Controllable Friction Clutch is identical to the
Wait state of the Fundamental Friction Clutch, with the replacement
of the positive kinetic friction condition (τ K > 0) by the positive clutch
friction capacity condition (P ≥ Pth).

5-11

Controllable Friction Clutch

Power Dissipated by the Clutch
The power dissipated by the clutch is ω·τ K. The clutch dissipates power
only if it is both slipping (ω≠ 0) and applying kinetic friction (τ K ≠ 0).

Examples These SimDriveline™ demo models contain working examples of
controllable friction clutches used to change gear couplings:

• drive_sclutch

• drive_clutch_engage

• drive_strans

• drive_crcr

• drive_full_car

• drive_vehicle

See Also Differential, Driveline Environment, Fundamental Friction Clutch,
Torque Converter

See “Controlling Gear Couplings with Clutches” on page 2-23.

In the Simulink documentation, see the Signal Routing Library and the
Sources Library, and “Zero-Crossing Detection”.

5-12

CR-CR 4-Speed

Purpose Model CR-CR four-speed transmission based on two planetary gear sets

Library Transmission Templates

Description

The CR-CR 4-Speed transmission block is a subsystem model based on
a simple planetary gearbox consisting of two standard planetary gear
sets, an input set and an output set, connected together. (CR-CR stands
for “carrier-ring–carrier-ring.”) The ring of the input planetary gear set
is connected to the carrier of the output planetary set. Similarly, the
ring of the output planetary gear set is connected to the carrier of the
input planetary gear set. The input, or driver, shaft is connected either
to the carrier of the input planetary gear set or to the ring of the output
planetary gear set. The output, or driven, shaft is connected to the
carrier of the output planetary gear set and to the ring of the input
planetary gear set. The five transmission clutches A, B, C, D, and R
are modeled with Controllable Friction Clutch blocks. (The R clutch
engages only in reverse.) You connect the transmission along a driveline
axis, with the In and Out connector ports representing the input and
output shafts, respectively.

This transmission subsystem has two independent internal degrees
of freedom and therefore requires that two clutches be locked at any
instant in order to achieve a unique drive ratio from the input shaft
to the output shaft. The clutch schedule and the corresponding drive
ratios are provided in the block subsystem’s clutch schedule table. You
disengage this transmission by unlocking all its clutches simultaneously.

5-13

CR-CR 4-Speed

Using Transmission Template Subsystems

A Transmission Template block is not library-linked. Once you make a
copy in your model, you can use it as is. You can also open and customize
it as a subsystem by reconfiguring the properties of the individual Gear,
Controllable Friction Clutch, and Inertia blocks.

You must provide a five-component Simulink® vector signal of the
normalized pressures applied to each clutch. The order of the pressure
signals is ABCDR.

Default Inertia, Gear, and Clutch Settings

All the Controllable Friction Clutch blocks in this Transmission
subsystem have their default settings. The Gear ratios are reset to
nondefault values.

To prevent dynamical singularities, some of the gear wheels have
attached Inertia blocks with small default inertias in the 10–4 kg-m2

(kilogram-meters2) range.

Subsystem
Parameters

The gear ratio is the ratio of gear wheel radii r, gear wheel teeth N, or
torque transferred τ . The gear ratio is the reciprocal of the ratio of the
angular velocities ω transferred. The drive ratio is the effective gear
ratio, output to input, of the entire transmission.

The basic CR-CR 4-speed transmission gear ratios are

gi = Input planetary ring/input planetary sun gear ratio = rRi/rSi =
NRi/NSi

go = Output planetary ring/output planetary sun gear ratio = rRo/rSo =
NRo/NSo

This table specifies the locked (L) and free (F) clutches A, B, C, and D
for each gear setting. A free clutch is completely disengaged.

5-14

CR-CR 4-Speed

CR-CR 4–Speed Clutch Schedule

Gear Setting Drive Ratio A B C D R

1 1 + go L F F L F

2 1 + go/(1 + gi) L F L F F

3 1 L L F F F

4 gi/(1 + gi) F L L F F

Reverse -gi F F F L L

Examples These SimDriveline™ demo models make use of CR-CR transmission
blocks to transfer drivetrain torque and motion:

• drive_crcr

• drive_full_car

• drive_vehicle

See Also Controllable Friction Clutch, Inertia, Lepelletier 6-Speed, Lepelletier
7-Speed, Planetary Gear, Ravigneaux 4-Speed

See “Combining Clutches and Gears into Transmissions” on page 2-36.

5-15

Diesel Engine

Purpose Model diesel fuel engine with throttle control, speed governor, and
driveline output

Library Vehicle Components

Description The Diesel Engine block models a diesel-fuel, compression-ignition
engine with a speed governor. The engine runs at a variable speed
that you can control with a Simulink® throttle signal. The throttle
signal directly controls the output torque that the engine generates
and indirectly controls the speed at which the engine runs. If the
engine speed exceeds the maximum speed that you specify, the engine
torque drops to zero. The model does not include the air-fuel dynamics
of combustion.

The block accepts the throttle signal through a Simulink inport. This
signal specifies the engine torque as a fraction of the maximum torque
possible in a steady state at a fixed engine speed and should lie between
0 and 1. A throttle signal below zero is interpreted as zero; above one,
as one.

To prevent engine power and torque from becoming negative, the block
imposes an upper limit on the maximum engine speed itself. If the
maximum speed you specify exceeds this limit, the block issues an error
that indicates what the upper limit is.

Using Vehicle Component Blocks

Use the blocks of the Vehicle Components library as a starting point
for vehicle modeling. To see how a Vehicle Component block models a
driveline component, look under the block mask. The blocks of this
library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-16

Diesel Engine

Dialog
Box and
Parameters

Maximum power
Maximum power that the engine can output, in watts (W). The
default is 150000.

Speed at maximum power
Engine speed, in revolutions per minute (rpm), when the engine is
running at maximum power. The default is 3500.

Maximum speed
Maximum speed, in revolutions per minute (rpm), at which the
engine can turn. The default is 4500.

During simulation, if the engine speed exceeds this maximum,
the engine torque drops to zero.

Engine
Model

The engine model uses a programmed relationship between torque and
speed, modulated by the throttle signal. An actual diesel engine does
not have a throttle.

5-17

Diesel Engine

Engine Speed, Torque, and Throttle

The engine model is specified by an engine torque demand function g(Ω)
built into the block. It provides the maximum torque available for a
given engine speed Ω. The block dialog entries (maximum power, speed
at maximum power, and maximum speed) normalize this function to
physical maximum torque and speed values.

The throttle input signal T specifies the actual engine torque delivered
as a fraction of the maximum torque possible in a steady state at a
fixed engine speed. It modulates the actual torque delivered τ from the
engine: τ = T·g(Ω). The actual engine drive shaft speed Ω is fed back
to the engine input.

Engine Power and Torque Demand

The demand function g(Ω) is specified in terms of the steady-state
engine power P(Ω).

The engine speed is limited to a maximum: 0 ≤ Ω≤ Ωmax. The absolute
maximum engine power Pmax defines Ω0 such that Pmax = P(Ω0). Define w
= Ω/Ω0 and P(Ω) = Pmax·p(w). Then p(1) = 1 and dp(1)/dw = 0. Power is
the product of torque and angular velocity. The torque demand function
is thus

τmax max() (/) [() /]= = ⋅g w P p w wΩ0

You can derive forms for p(w) from engine data and models.

The block uses a polynomial form for P(Ω):

p(w) = p1·w + p2·w
2– p3·w

3

satisfying

p1 + p2– p3 = 1 and p1 + 2p2– 3p3 = 0

5-18

Diesel Engine

�

��������
� ����

����

Typical Engine Power Demand Function

See Also Controllable Friction Clutch, Gasoline Engine, Torque Converter

See “Modeling and Simulating a Complete Car” on page 2-52.

5-19

Differential

Purpose Represent differential gear with specified gear ratio

Library Gears

Description The Differential block represents a differential gear that couples
rotational motion about the longitudinal axis to rotational motion about
two lateral axes.

Any one axis can be the input. In normal use, the longitudinal shaft is
the input, and motion, torque, and power flow out through the lateral
shafts. The output axes, in general, have different angular velocities.
The longitudinal motion is divided by the drive gear ratio that you
specify and then split between the two lateral shafts.

Differentials in drivelines often have a controllable clutch connecting
the two output shafts. You can add this clutch control by appropriately
connecting a Controllable Friction Clutch block to the Differential block.

Axis Motions and Constraints

The three rotational degrees of freedom, the longitudinal ωB and the
lateral ωF1 and ωF2, are subject to one gear constraint and reduce to two
independent degrees of freedom. In terms of the drive gear ratio gD, the
longitudinal motion is related to the sum of the lateral motions:

ωB = (1/2) · gD(ωF1 + ωF2)

The sum of the lateral motions is this transformed longitudinal motion,
once the longitudinal axis is connected. The difference of lateral
motions ωF1 – ωF2 is independent of the longitudinal motion. These two
independent degrees of freedom have this physical significance:

• One degree of freedom (longitudinal) is equivalent to the two lateral
shafts rotating at the same angular velocity (ωF1 = ωF2) and at a fixed
ratio with respect to the longitudinal shaft.

• The other degree of freedom (differential) is equivalent to keeping the
longitudinal shaft locked (ωB = 0) while the lateral shafts rotate with
respect to each other in opposite directions (ωF1 = -ωF2).

5-20

Differential

The general motion of the lateral shafts is a superposition of these two
motions.

The torques along the lateral axes, τ F1 and τ F2, are constrained to the
longitudinal torque τ B in such a way that the power input equals the
sum of the power outputs:

ωBτ B = ωF1τ F1 + ωF2τ F2

When the kinematic and power constraints are combined,

gDτ B = 2(ωF1τ F1 + ωF2τ F2) / (ωF1 + ωF2)

Warning

All gear ratios must be strictly positive. If any gear ratio equals
0 or becomes negative at any time, a SimDriveline™ simulation
stops with an error.

Dialog
Box and
Parameters

Drive gear ratio
Ratio gD is twice the ratio of the input angular motion to the sum
of the two output angular motions. This ratio must be strictly
positive. The default is 1.

5-21

Differential

Examples The demo model drive_4wd_dynamics combines two differentials with
four tire-wheel assemblies to model the contact of tires with the road
and the longitudinal vehicle motion.

See Also Controllable Friction Clutch, Initial Condition, Longitudinal Vehicle
Dynamics, Tire

See “Representing and Transferring Driveline Motion and Torque” on
page 2-9.

5-22

Driveline Environment

Purpose Represent driveline environment

Library Solver & Inertias

Description Each driveline represented by a connected SimDriveline™ block
diagram requires global environment information for simulation.
The Driveline Environment block specifies this global information
and connects the solver that your model needs before you can begin
simulation.

Each topologically distinct driveline block diagram requires exactly one
Driveline Environment block to be connected to it.

Clutch Modes and Mode Iteration

The Driveline Environment block also controls how the Controllable
Friction Clutches of your model lock and unlock during simulation.
Once a clutch locks and switches from kinetic to static friction or
unlocks and switches from static to kinetic friction, it can unlock only
under certain conditions that are tested by mode iteration.

• With mode iteration turned on, the simulation suspends its time
steps and enters an algebraic loop to check the conditions for locking
or unlocking until it reaches global consistency across the model.
This is the default.

• With mode iteration turned off, the simulation checks for locking
and unlocking while continuing in time. Turning off mode iteration
improves your simulation performance, but might degrade its
accuracy.

Mode Iteration and Code Generation

In the default mode, clutch mode changes simulate with mode iteration
turned on. However, in the generated code versions of SimDriveline
models, mode iteration is turned off automatically. Clutch locking and
unlocking are determined over multiple time steps.

5-23

Driveline Environment

Specifying Clutch Velocity Tolerances in a Driveline

A Driveline Environment block can control the velocity tolerance
settings for all the clutches in the driveline connected to it. It specifies
these settings by default if you do not specify overriding settings in
individual clutches.

Apart from overriding individual clutch settings, the velocity tolerance
settings act on the entire driveline differently depending on the type
of solver you choose.

• If you choose a variable-step solver, you can require non-overriding
clutches either to

- Compute the velocity tolerance value automatically from solver
settings (the default configuration of the Driveline Environment
block).

- Use the velocity tolerance value you enter here.

• If you choose a fixed-step solver, you must specify a velocity tolerance
value. In those clutches without overriding individual values, the
driveline always uses the velocity tolerance value you enter here.

5-24

Driveline Environment

Dialog
Box and
Parameters

Disable mode iteration for clutch locking
Controls the mode iteration for locking and unlocking of
Controllable Friction Clutches in your driveline model. Select the
check box to disable mode iteration. The default is unselected.

Use automatic default clutch velocity tolerance for variable-step
solvers

Requires clutches in the connected driveline without individual
overrides to compute a velocity tolerance based on solver settings.
Valid only if you use a variable-step solver. The default is selected.

Default clutch velocity tolerance
For clutches without individual override settings, the default
velocity tolerance value, in radians/second (rad/s). This value
must be strictly positive. The default value is 1e-3.

5-25

Driveline Environment

This setting is valid if

• You use a variable-step solver and unselect the Use automatic
default clutch velocity tolerance for variable-step
solvers check box.

• You use a fixed-step solver, regardless of the Use automatic
default clutch velocity tolerance for variable-step
solvers check box setting.

Restricted Parameters

When your model is in Restricted editing mode, you can change this
check box:

• Use automatic default clutch velocity tolerance for
variable-step solvers

This option is an exception to the Simscape™ editing mode rules.

See Also Controllable Friction Clutch, Shared Environment

See “Essential Steps to Building a Driveline Model” on page 2-7.

5-26

Dual-Ratio Planetary

Purpose Represent set of carrier, sun, planet, and ring gear wheels with specified
ring-planet and planet-sun gear ratios

Library Gears

Description The Dual-Ratio Planetary block represents a set of carrier, sun, planet,
and ring gear wheels. The planet is a single gear wheel with two
different radii meshing with the ring and the sun, respectively. The
ring and planet corotate with one fixed gear ratio. The planet and sun
corotate with another fixed gear ratio.

To model the planet’s rotational inertia, connect an Inertia block to
the optional planet connector port.

Axis Motions and Constraints

The Dual-Ratio Planetary block imposes two kinematic and two
geometric constraints on the three connected axes and the fourth,
internal wheel (planet):

rCωC = rSωS+ rP1ωP , rC = rS + rP1

rRωR = rCωC+ rP2ωP , rR = rC + rP2

In terms of the ring-to-planet gear ratio gRP = rR/rP2 and the
planet-to-sun gear ratio gPS = rP1/rS, the key kinematic constraint is

(1 + gRP·gPS)ωC = ωS + gRP·gPS·ωR

The four degrees of freedom are reduced to two independent degrees
of freedom.

The gear ratios are also the ratios of the number of teeth on each gear
and the ratios of the torques in each axis, gRP = NR/NP2 = τ R/τ P2 and
gPS = NP1/NS = τ P1/τ S.

5-27

Dual-Ratio Planetary

Warning

All gear ratios must be strictly positive. If any gear ratio equals
0 or becomes negative at any time, a SimDriveline™ simulation
stops with an error.

The gear ratio gRP must be strictly greater than one.

Dual-Ratio Planetary Gear Set

5-28

Dual-Ratio Planetary

Dialog
Box and
Parameters

Ring (R)/Planet (P) gear ratio
Ratio gRP of the ring gear wheel radius to the planet gear wheel
radius. This ratio must be strictly greater than 1. The default is 2.

Planet (P)/Sun (S) gear ratio
Ratio gPS of the planet gear wheel radius to the sun gear wheel
radius. This ratio must be strictly positive. The default is 2.

Show planet connector port (P)
Selecting this check box makes the connector port for the planet
gear visible and available for connection to other driveline blocks.

Use this connector port to connect an Inertia block if you want to
model the planet gear’s inertia. The default is unselected, with
the planet gear’s inertia neglected in the dynamics.

Example The drive_dual_ratio_planetary_pic demo illustrates the dual-ratio
planetary gear with an animation.

5-29

Dual-Ratio Planetary

See Also Planet-Planet, Planetary Gear, Ring-Planet

See “Representing and Transferring Driveline Motion and Torque” on
page 2-9.

5-30

Fundamental Friction Clutch

Purpose Represent friction clutch controlled by kinetic and upper and lower
static friction signals

Library Dynamic Elements

Description A friction clutch transfers torque between two driveline axes by coupling
them with friction. The Fundamental Friction Clutch block models a
standard friction clutch with kinetic friction and static (locking) friction
acting on the two axes. The motion is measured as the slip of follower
(F) axis relative to base (B) axis, ω= ωF – ωB.

The Fundamental Friction Clutch requires three input signals:

• Kinetic friction torque τ K (port τ k)

• Static friction upper limit torque τ S
+ (port τ +)

• Static friction lower limit torque τ S
– (port τ –)

Clutch Directionality

The friction clutch has two possible directionalities:

• Bidirectional (ω≤ 0 or ω≥ 0), allowing the follower to rotate relative
to the base in either direction

• Unidirectional (ω≥ 0), allowing the follower to rotate relative to the
base in the forward direction only

Modeling Unidirectional Clutches
A unidirectional clutch is equivalent to a friction clutch connected in
parallel to a one-way clutch that disengages when the relative motion
reverses.

You can model a pure one-way clutch using a unidirectional clutch
block with zero kinetic and static friction inputs. In that case, forward
relative motion is friction-free, and reverse relative motion is forbidden.

If you want a unidirectional clutch that allows the follower to
rotate relative to the base in the reverse direction only, connect the

5-31

Fundamental Friction Clutch

Fundamental Friction block in your driveline with reversed orientation,
follower (F) to base (B).

Clutch States and Transitions

A friction clutch can be in one of three states:

• Unengaged (ω≠ 0), when the clutch applies no friction at all. The
frictional surfaces are not in contact. The follower and base are
independent, and no torque is transferred between them. No power
is dissipated by the clutch in this state.

• Engaged (but not locked, ω≠ 0), when the clutch applies kinetic
friction as the frictional surfaces touch and slip past one another.
The follower and base remain independent, but some torque is
transferred between them.

The clutch dissipates power only in this state. The power dissipated
is ω·τ K.

• Locked (ω= 0), when the clutch applies static friction. The frictional
surfaces are locked together and do not slip. The follower and base
effectively form a single axis. This state transfers the maximum
torque possible. Because static constraints do no work, no power is
dissipated by the clutch in this state.

There is also a fourth, virtual state called the wait state (see “Friction
Clutch Theory and Implementation” on page 5-39).

Clutch Locking and Unlocking
Locking requires that the:

• Relative speed |ω| be smaller than a velocity threshold ωTol.

• Kinetic friction torque τ K be nonzero.

The static friction torque controls the unlocking of a friction clutch.
(You can optionally lock the clutch at the start of the simulation as
well.) When the clutch is locked, it remains locked unless the torque
transferred across the clutch exceeds the static friction torque limits.

5-32

Fundamental Friction Clutch

Clutches, Constraints, and Degrees of Freedom
If it locks, a Fundamental Friction Clutch block imposes a constraint
on your driveline by requiring that two otherwise independent angular
velocities be equal. A locked clutch thus reduces the number of
independent degrees of freedom by one.

On the other hand, a clutch unlocking restores an independent degree
of freedom to a driveline.

A locking clutch imposes a dynamic constraint because its constraint
can appear and disappear during the simulation.

Clutch Mode Iteration

Mode Iteration and Algebraic Loops A clutch locks or unlocks after
a set of locking conditions are tested (see “Friction Clutch Theory and
Implementation” on page 5-39). This testing is called mode iteration.

In the default case, mode iteration requires non-time-increment
simulation steps (algebraic loops) that trigger warnings at the
MATLAB® command line.

Enabling and Disabling Mode Iteration
You can turn off mode iteration for a whole driveline from that
driveline’s Driveline Environment block. In that case, the friction
clutches of your model are tested without mode iteration. Instead,
the locking and unlocking tests are applied over multiple time steps,
improving your simulation performance, but possibly decreasing its
accuracy.

Mode Iteration and Zero-Crossing Detection
The Fundamental Friction Clutch uses a specialized type of zero-crossing
detection (ZCD) to solve the locking and unlocking conditions. To
avoid infinite loops and zero-crossing conflicts, disable any other ZCD
conditions applied to a clutch-connected driveshaft by normal Simulink®

blocks connected directly or indirectly to its driveline connection line.

5-33

Fundamental Friction Clutch

Mode Iteration and Code Generation
In the default mode, clutch mode changes are simulated with mode
iteration turned on. However, in the generated code versions of
SimDriveline™ models, mode iteration is turned off automatically.
Clutch locking and unlocking are determined over multiple time steps.

Setting the Clutch Velocity Tolerance

Clutch Velocity Tolerance and Solvers Variable-step solvers allow
you to use either automatically computed or explicitly specified values
for ωTol. Fixed-step solvers require you to specify a value for ωTol, either
in each clutch or in the connected Driveline Environment block.

You can set the clutch velocity tolerance or threshold ωTol for a clutch in
a number of ways, using a value specified in the clutch itself or in the
Driveline Environment block connected to its driveline, and depending
on whether you are using a variable- or fixed-step solver.

• You can allow the clutch to use the driveline-wide default velocity
tolerance settings specified in the Driveline Environment block.

This is the default configuration of the clutch.

• You can override the driveline-wide default velocity tolerance settings
by allowing a particular clutch to automatically compute a velocity
tolerance from solver settings.

This option is available only if you use a variable-step solver.

• You can override the driveline-wide default velocity tolerance settings
by specifying an individual velocity tolerance value for a particular
clutch.

Using Dynamic Element Blocks

Use the blocks of the Dynamic Elements library as a starting point
for vehicle modeling. To see how a Dynamic Element block models a
driveline component, look under the block mask. The blocks of this

5-34

Fundamental Friction Clutch

library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-35

Fundamental Friction Clutch

Dialog
Box and
Parameters

5-36

Fundamental Friction Clutch

Directionality
Select Bidirectional or Unidirectional to determine how the
follower axis can turn relative to the base, in both directions
or only in the forward direction, respectively. The default is
Bidirectional.

Use default clutch velocity tolerance from the Driveline
Environment block

Select to require this clutch to use the driveline-wide velocity
tolerance ωTol specified in the Driveline Environment block
connected to the driveline. The default is selected.

If you unselect this check box, you enable the Use automatic
clutch velocity tolerance for variable-step solvers check box
and the Clutch velocity tolerance field (see following).

Clutch velocity tolerance
Sets the minimum angular velocity ωTol above which the clutch
cannot lock. Below this velocity, the clutch can lock. (See the
diagram, Clutch States and Transitions on page 5-40.) The units
are radians/second. The default is 1e-3.

For a fixed-step solver, this clutch always uses this value, if you
do not specify a default velocity tolerance through the Driveline
Environment block.

This field is enabled only if the Use default clutch velocity
tolerance from the Driveline Environment block check box
is unselected.

5-37

Fundamental Friction Clutch

Use automatic clutch velocity tolerance for variable-step solvers
Select to require this clutch to compute the velocity tolerance ωTol
automatically from solver settings. The default is selected.

This check box is enabled only if the Use default clutch velocity
tolerance from the Driveline Environment block check box
is unselected.

Start simulation with clutch in locked mode
Select to start the simulation with the clutch already locked. The
default is unselected.

Output clutch slip (S)
Select to make available the Simulink outport for the clutch
slippage signal. The default is unselected.

The clutch slippage is the relative angular velocity ωof the two
coupled driveline axes. The signal measures the clutch slippage
in radians/second.

Output clutch mode (M)
Select to make available the Simulink port for the discrete clutch
mode signal. The default is unselected.

The signal value is the sign ±1 of the angular velocity ω of the
follower relative to the base. If the follower and base are locked
and rotate together, the signal value is 0.

Restricted Parameters

When your model is in Restricted editing mode, you can change these
check boxes:

5-38

Fundamental Friction Clutch

• Use default clutch velocity tolerance from the Driveline
Environment block

• Use automatic clutch velocity tolerance for variable-step
solvers

These options are exceptions to the Simscape™ editing mode rules.

Friction
Clutch
Theory
and
Implementation

The Fundamental Friction Clutch block can apply two kinds of friction
to driveline motion, kinetic and static.

• The clutch applies kinetic friction torque, specified as an input signal,
only when one driveline axis is spinning relative to the other driveline
axis; that is, when the clutch is unlocked and the slip nonzero.

• The clutch applies static friction torque when the two driveline axes
are locked and spin together, without slip.

You specify static friction limits as input signals. These upper and
lower limits define a locked range of static friction. If the friction
across the clutch remains within this range, the clutch remains
locked.

The block iterates through multistep testing to decide when to lock
and unlock the clutch.

Clutch State, Transition, and Variable Summary

The first chart summarizes the possible states and transitions of a
bidirectional clutch. The states and transitions of a unidirectional
clutch consist of just the right half of the chart. The second diagram
summarizes the physical differences between the locked and unlocked
states. The final table summarizes the clutch variables.

5-39

Fundamental Friction Clutch

Clutch States and Transitions

5-40

Fundamental Friction Clutch

Clutch Slip vs. Friction Torque

Clutch State Variables

Symbol Definition Inport Significance

ω Relative angular
velocity (slip)

ωF – ω B

α Relative angular
acceleration

dω/dt

ωTol Relative angular
velocity tolerance for
clutch locking

First locking condition:
|ω| ≤ ωTol

τ K Kinetic friction
torque

τ k Second locking condition:
τ K > 0

5-41

Fundamental Friction Clutch

Clutch State Variables (Continued)

Symbol Definition Inport Significance

τ S
± Static friction torque

limits
τ ± Defines locked range

τ Total torque
transferred across
clutch

Clutch remains locked if
τ S

– < τ < τ S
+

Unlocked State: Kinetic Friction

The kinetic friction torque τ K applied between the base and follower
driveshafts is specified by the incoming signal at the τ k inport.

The Fundamental Friction Clutch applies this torque as long as the
clutch remains unlocked.

Locked State: Static Friction

Once the friction clutch locks, it remains locked as long as the total
torque τ transferred across the clutch remains within the range defined
by the static friction torque limits:

τ S
– < τ < τ S

+

You specify the static friction torque limits τ S
± by the incoming signals

at the τ + and τ – inports.

In general, τ S
+ and τ S

– are independent, as long as

τ S
– < τ S

+

How the Friction Clutch Locks and Unlocks

The locking and unlocking of a friction clutch proceed through an
intermediate Wait state.

Wait State
The Wait state is a virtual state that continues the motion of the clutch’s
previous state but tests for locking or unlocking.

5-42

Fundamental Friction Clutch

• If the clutch moved to Wait from Locked, it remains locked while
in Wait.

• If the clutch moved to Wait from Unlocked, it remains unlocked
while in Wait.

Clutch Locking
The friction clutch locks the two connected driveline axes together when
both these conditions hold:

• |τ K| > 0

• Either of these conditions:

- |ω| ≤ ωTol

- ω changes sign while the clutch is unlocked

If the ω changes sign while the clutch is unlocked, but τ K = 0, the
clutch enters the Wait state. While the clutch is in the Wait state, the
driveshafts continue to slip relative to one another, subject to τ K. If
while in the Wait state, the clutch locking conditions become true, the
clutch moves to Locked.

Note You can also lock a clutch before the simulation starts with the
Start simulation with clutch in locked mode option in the dialog.
(See “Manually Locking a Clutch at Simulation Start” on page 5-45.)

Clutch Unlocking
If the total torque across the two driveline axes moves outside the static
friction limit range, the clutch enters the Wait state. While the clutch is
in the Wait state, it remains locked but tests for unlocking.

The unlocking of a friction clutch is a conditional, multistep process
implemented internally.

5-43

Fundamental Friction Clutch

• If you turn off mode iteration for your driveline model (in the
Driveline Environment block dialog), the clutch unlocks over multiple
simulation time steps.

• If you leave it on, the simulation suspends the time steps and starts
mode iteration to determine whether to unlock the clutch.

The Wait state encompasses the steps that test the entire driveline for
unlocking.

1 The block first checks the relative acceleration α = dω/dt of the two
driveline axes, given the torques present when the clutch enters the
Wait state.

The clutch returns from the Wait state to the Locked state if

• The whole driveline requires the axes to turn in the relative
forward direction, but α is negative.

• The whole driveline requires the axes to turn in the relative
reverse direction, but α is positive.

2 If the clutch remains in the Wait state instead of returning to
Locked, the relative acceleration is integrated in time to obtain the
absolute value of the virtual angular speed and checks this result
against angular velocity tolerance ωTol. If the result is less than ωTol,
the clutch returns to the start of the Wait state and the relative
acceleration check. If the result exceeds ωTol, the clutch unlocks.

3 In the Unlocked state, the clutch begins applying kinetic friction
again.

Default Initial State

When your driveline simulation starts, the physical state of the clutch
is undetermined, unless you require the clutch to be locked beforehand.
(See “Manually Locking a Clutch at Simulation Start” on page 5-45.)

In the model, the clutch starts in a temporary Default Initial state.
When the simulation gets underway, the clutch immediately tests its

5-44

Fundamental Friction Clutch

condition to see if it should be locked or unlocked and moves itself to
the appropriate state.

Manually Locking a Clutch at Simulation Start

For any particular clutch, you can override the initial clutch mode
iteration at the simulation start (see “Default Initial State” on page
5-44) by selecting the Start simulation with clutch in locked mode
check box in that clutch’s dialog. In this case, the simulation starts with
that clutch already in the Locked state, with no initial tests of clutch
conditions.

Examples The Controllable Friction Clutch is a subsystem built from the
Fundamental Friction Clutch. Consult its block reference page for
further details.

The Controllable Friction Clutch and models using it are SimDriveline
examples of friction clutches.

Reference [1] Moler, C. B., Numerical Computing with MATLAB, Philadelphia,
Society for Industrial and Applied Mathematics, 2004, Chapter 7.

See Also Controllable Friction Clutch, Differential, Driveline Environment,
Torque Converter

See “Controlling Gear Couplings with Clutches” on page 2-23.

In the Simulink documentation, see the Signal Routing Library and the
Sources Library, and “Zero-Crossing Detection”.

5-45

Gasoline Engine

Purpose Model gasoline fuel engine with throttle control, speed governor, and
driveline output

Library Vehicle Components

Description The Gasoline Engine block models a gasoline-fuel, spark-ignition engine
with a speed governor. The engine runs at a variable speed that you can
control with a Simulink® throttle signal. The throttle signal directly
controls the output torque that the engine generates and indirectly
controls the speed at which the engine runs. If the engine speed exceeds
the maximum speed that you specify, the engine torque drops to zero.
The model does not include the air-fuel dynamics of combustion.

The block accepts the throttle signal through a Simulink inport. This
signal specifies the engine torque as a fraction of the maximum torque
possible in a steady state at a fixed engine speed and should lie between
0 and 1. A throttle signal below zero is interpreted as zero; above one,
as one.

To prevent engine power and torque from becoming negative, the block
imposes an upper limit on the maximum engine speed itself. If the
maximum speed you specify exceeds this limit, the block issues an error
that indicates what the upper limit is.

Using Vehicle Component Blocks

Use the blocks of the Vehicle Components library as a starting point
for vehicle modeling. To see how a Vehicle Component block models a
driveline component, look under the block mask. The blocks of this
library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-46

Gasoline Engine

Dialog
Box and
Parameters

Maximum power
Maximum power that the engine can output, in watts (W). The
default is 150000.

Speed at maximum power
Engine speed, in revolutions per minute (rpm), when the engine is
running at maximum power. The default is 4500.

Maximum speed
Maximum speed, in revolutions per minute (rpm), at which the
engine can turn. The default is 6000.

During simulation, if the engine speed exceeds this maximum,
the engine torque drops to zero.

5-47

Gasoline Engine

Engine
Model

The engine model uses a programmed relationship between torque and
speed, modulated by the throttle signal.

Engine Speed, Torque, and Throttle

The engine model is specified by an engine torque demand function g(Ω)
built into the block. It provides the maximum torque available for a
given engine speed Ω. The block dialog entries (maximum power, speed
at maximum power, and maximum speed) normalize this function to
physical maximum torque and speed values.

The throttle input signal T specifies the actual engine torque delivered
as a fraction of the maximum torque possible in a steady state at a
fixed engine speed. It modulates the actual torque delivered τ from the
engine: τ = T·g(Ω). The actual engine drive shaft speed Ω is fed back
to the engine input.

Engine Power and Torque Demand

The demand function g(Ω) is specified in terms of the steady-state
engine power P(Ω).

The engine speed is limited to a maximum: 0 ≤ Ω≤ Ωmax. The absolute
maximum engine power Pmax defines Ω0 such that Pmax = P(Ω0). Define w
= Ω/Ω0 and P(Ω) = Pmax·p(w). Then p(1) = 1 and dp(1)/dw = 0. Power is
the product of torque and angular velocity. The torque demand function
is thus

τmax max() (/) [() /]= = ⋅g w P p w wΩ0

You can derive forms for p(w) from engine data and models.

The block uses a polynomial form for P(Ω):

p(w) = p1·w + p2·w
2– p3·w

3

satisfying

p1 + p2– p3 = 1 and p1 + 2p2– 3p3 = 0

5-48

Gasoline Engine

�

��������
� ����

����

Typical Engine Power Demand Function

Examples These SimDriveline™ demo models make use of gasoline engines to
power their drivelines:

• drive_full_car

• drive_4wd_dynamics

• drive_vehicle

See Also Controllable Friction Clutch, Diesel Engine, Torque Converter

See “Modeling and Simulating a Complete Car” on page 2-52.

5-49

Hard Stop

Purpose Model restriction on relative angular motion of two driveline axes to
free gap with elastic upper and lower limits

Library Dynamic Elements

Description The Hard Stop block simulates a two-position rotational stop that
restricts the relative angular displacement θ of the two connected
driveline axes.

• If the relative displacement falls in the gap between the stop’s upper
and lower limits, the stop applies no torque.

• If the relative displacement becomes greater than the upper limit θ+
or smaller than the lower limit θ-, the stop applies a torque.

At each limit, the stop imposes a one-sided damped, linear torsional
torque limiting the motion of θ.

The relative angular displacement is the difference of the follower and
base driveline axis angles, θ = θF – θB, and the relative angular velocity
ω= dθ/dt = ωF – ωB. If the angular displacement reaches beyond one of
the stop limits, the torque applied is a sum of restoring and damping
terms,

τ = –k·(θ – θ±) – bω

where k is the contact stiffness, b the contact damping, and θ± is the
upper limit θ+ or the lower limit θ-. Both constants k and b must be
nonnegative. The restoring torque depends only on the deformation
angle θ – θ±, measuring how far the displacement has penetrated
beyond the upper or lower limit.

Relationship to Restitution

A restitution description of impact specifies the ratio of postimpact and
preimpact velocities.

The effective inertias attached to the base and follower axes are IB and
IF, respectively. The reduced inertia for the relative motion is

5-50

Hard Stop

I = IBIF/(IB + IF)

Let the relative motion begin penetration of a one-sided stop limit at
time ti and complete its bounce at time tf. The damped, linear springy
torque reduces the final angular velocity, compared to the initial, by
the ratio

�

�
�
�

θ
θ

θ
θ

()

()
()
()

t

t
b
I

dt
t
t

f

i ii

f

= − ⋅ ⋅
⎡

⎣
⎢

⎤

⎦
⎥∫1

2
2

Using Dynamic Element Blocks

Use the blocks of the Dynamic Elements library as a starting point
for vehicle modeling. To see how a Dynamic Element block models a
driveline component, look under the block mask. The blocks of this
library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-51

Hard Stop

Dialog
Box and
Parameters

Relative displacement upper limit
The largest relative displacement angle, in radians (rad), for
which the stop does not apply a torque, measured relative to
the initial relative angle. Must be larger than the relative
displacement lower limit. The default is 0.15.

Relative displacement lower limit
The smallest relative displacement angle, in radians (rad), for
which the stop does not apply a torque, measured relative to
the initial relative angle. Must be smaller than the relative
displacement upper limit. The default is -0.1.

Contact stiffness
The linear contact stiffness constant k, in newton-meters/radian
(N·m/rad). Must be nonnegative. The default is 1e6.

5-52

Hard Stop

Contact damping
The linear damping torque constant b, in
newton-meter-seconds/radian (N·m·s/rad). Must be nonnegative.
The default is 100.

Examples The demo model drive_hard_stop simulates angular motion limited
by a hard stop.

See Also Torsional Spring-Damper

5-53

Housing

Purpose Rotationally lock connected driveline axis and prevent it from turning

Library Solver & Inertias

Description The Housing block prevents any driveline component connected to
it from rotating about its driveline axis by locking its motion to zero
angular velocity.

Dialog
Box and
Parameters

This block has no parameters.

See Also Inertia, Shared Environment

5-54

Inertia

Purpose Represent body with rotational inertia

Library Solver & Inertias

Description The Inertia block represents a rigid rotating body. It rotates about the
connected driveline axis, which carries the degree of freedom of motion.
The body carries a rotational moment of inertia about that axis, which
you specify in the block dialog.

The Inertia block has one port. You can connect it to a driveline axis by

• Connecting the port to the end of the axis

• Branching a connection line off the main line and connecting it to
the port

Caution

Normally, a rigid body along a driveline has a positive inertia. You can
also enter zero inertia for particular driveline bodies. If you do so, you
must ensure that the effective inertia of your entire driveline is positive
before actuating it with torques.

Modeling a Variable Inertia

You cannot vary the inertia value of an Inertia block during a
simulation. However, you can model a time-varying inertia indirectly
with a Variable Ratio Gear block. This method relies on the conservation
of angular momentum.

Place a Variable Ratio Gear between a shaft and an Inertia. Connect
this constant Inertia to the Gear’s base (B) or follower (F) port. Then
vary the gear ratio of the Variable Ratio Gear with an incoming
Simulink® signal. By changing the gear ratio, you change the effective
inertia on the shaft from the constant Inertia.

5-55

Inertia

• Effective inertia = (constant inertia)•(variable gear ratio)
if the B port is connected to Inertia

• Effective inertia = (constant inertia)/(variable gear ratio)
if the F port is connected to Inertia

Effective Variable Inertia with a Variable Ratio Gear

Dialog
Box and
Parameters

5-56

Inertia

Inertia
Rotational moment of inertia of the body represented by the block.
Must be a real, nonnegative number or MATLAB expression. The
units are kilogram-meters2 (kg·m2). The default is 1.5e-3.

See Also Housing, Variable Ratio Gear

See “Essential Steps to Building a Driveline Model” on page 2-7.

5-57

Initial Condition

Purpose Set initial angular velocity of driveline axis to nonzero value

Library Sensors & Actuators

Description The Initial Condition block connects to a driveline axis and specifies a
value for the initial angular velocity of that axis. You specify the initial
angular velocity, in radians/second, in the block dialog.

The Initial Condition block has one port. You can connect it to a
driveline axis by

• Connecting the port to the end of the axis

• Branching a connection line off the main line and connecting it to
the port

Caution

If you do not connect an Initial Condition block to a driveline axis, the
axis is assumed to start the simulation with zero angular velocity. You
must ensure that the initial angular velocities of your coupled driveline
axes are consistent with one another. If they are not, the simulation
stops with an error.

Dialog
Box and
Parameters

5-58

Initial Condition

Initial angular velocity
The initial angular velocity of the driveline axis connected to this
block. The units are radians/second (rad/s). The default is 0.

See Also Housing, Inertia, Motion Actuator

5-59

Lepelletier 6-Speed

Purpose Model six-speed Lepelletier transmission based on planetary gear and
Ravigneaux gear

Library Transmission Templates

Description

The Lepelletier 6-Speed transmission block is a subsystem that models
a standard automotive transmission having six selectable forward
gear ratios and a single reverse gear ratio. The Lepelletier gearbox
is constructed by connecting a planetary gear to a Ravigneaux gear.
The sun of the planetary gear is connected to the housing and cannot
rotate. The carrier of the planetary gear is connected, by clutches (A
and C), to the large and small sun wheels of the Ravigneaux gear,
respectively. The input, or driver, shaft is always connected to the
ring of the planetary gear and can simultaneously be connected to the
carrier of the Ravigneaux gear using a separate clutch (B). The output,
or driven, shaft is connected to the ring of the Ravigneaux gear. The five
transmission clutches A, B, C, D, and E are modeled with Controllable
Friction Clutch blocks. You connect the transmission along a driveline
axis, with the In and Out connector ports representing the input and
output shafts, respectively.

This transmission subsystem has two independent internal degrees
of freedom and therefore requires that two clutches be locked at any
instant in order to achieve a unique drive ratio from the input shaft
to the output shaft. The clutch schedule and the corresponding drive

5-60

Lepelletier 6-Speed

ratios are provided in the block subsystem’s clutch schedule table. You
disengage this transmission by unlocking all its clutches simultaneously.

Using Transmission Template Subsystems

A Transmission Template block is not library-linked. Once you make a
copy in your model, you can use it as is. You can also open and customize
it as a subsystem by reconfiguring the properties of the individual Gear,
Controllable Friction Clutch, and Inertia blocks.

You must provide a five-component Simulink® vector signal of the
normalized pressures applied to each clutch. The order of the pressure
signals is ABCDE.

Default Inertia, Gear, and Clutch Settings

All the Controllable Friction Clutch blocks in this Transmission
subsystem have their default settings. The Gear ratios are reset to
nondefault values.

To prevent dynamical singularities, some of the gear wheels have
attached Inertia blocks with small default inertias in the 10–2 kg-m2

(kilogram-meters2) range.

Subsystem
Parameters

The gear ratio is the ratio of gear wheel radii r, gear wheel teeth N, or
torque transferred τ . The gear ratio is the reciprocal of the ratio of the
angular velocities ω transferred. The drive ratio is the effective gear
ratio, output to input, of the entire transmission.

The basic Lepelletier 6-speed transmission gear ratios are

gRS = Planetary ring/sun gear ratio = rpR/rpS = NpR/NpS

gRSl = Ravigneaux ring/large sun gear ratio = rR/rSl = NR/NSl

gRSs = Ravigneaux ring/small sun gear ratio = rR/rSs = NR/NSs

This table specifies the locked (L) and free (F) clutches A, B, C, D, and E
for each gear setting. A free clutch is completely disengaged.

5-61

Lepelletier 6-Speed

Lepelletier 6-Speed Clutch Schedule

Gear
Setting

Drive Ratio A B C D E

Reverse -gRSl·(1+gRS)/gRS L F F L F

1 gRSs·(1+gRS)/gRS F F L L F

2 (1+gRS)(gRSs+gRSl)/[gRS·(1+gRSl)] F F L F L

3 (1 + gRS)/gRS L F L F F

4 gRSs·(1 + gRS)/[gRSs·(1 + gRS) - 1] F L L F F

5 gRSl/[gRSl + 1/(1 + gRS)] L L F F F

6 gRSl/(1 + gRSl) F L F F L

See Also Controllable Friction Clutch, CR-CR 4-Speed, Inertia, Lepelletier
7-Speed, Planetary Gear, Ravigneaux, Ravigneaux 4-Speed

See “Combining Clutches and Gears into Transmissions” on page 2-36.

5-62

Lepelletier 7-Speed

Purpose Model seven-speed Lepelletier transmission based on planetary gear
and Ravigneaux gear

Library Transmission Templates

Description

The Lepelletier 7-Speed transmission block is a subsystem that models
a standard automotive transmission having seven selectable forward
gear ratios and a single reverse gear ratio. The Lepelletier gearbox is
constructed by connecting a planetary gear to a Ravigneaux gear. The
sun of the planetary gear is connected by a clutch (F) to the housing
and can be braked. The carrier of the planetary gear is connected, by
another clutch (C), to the small sun wheel of the Ravigneaux gear. The
input, or driver, shaft is always connected to the ring of the planetary
gear and can simultaneously be connected to the carrier and large
sun of the Ravigneaux gear using separate clutches (B and A). The
output, or driven, shaft is connected to the ring of the Ravigneaux gear.
The six transmission clutches A, B, C, D, E, and F are modeled with
Controllable Friction Clutch blocks. You connect the transmission along
a driveline axis, with the In and Out connector ports representing the
input and output shafts, respectively.

This transmission subsystem has three independent internal degrees
of freedom and therefore requires that three clutches be locked at any
instant in order to achieve a unique drive ratio from the input shaft
to the output shaft. The clutch schedule and the corresponding drive

5-63

Lepelletier 7-Speed

ratios are provided in the block subsystem’s clutch schedule table. You
disengage this transmission by unlocking all its clutches simultaneously.

Using Transmission Template Subsystems

A Transmission Template block is not library-linked. Once you make a
copy in your model, you can use it as is. You can also open and customize
it as a subsystem by reconfiguring the properties of the individual Gear,
Controllable Friction Clutch, and Inertia blocks.

You must provide a six-component Simulink® vector signal of the
normalized pressures applied to each clutch. The order of the pressure
signals is ABCDEF.

Default Inertia, Gear, and Clutch Settings

All the Controllable Friction Clutch blocks in this Transmission
subsystem have their default settings. The Gear ratios are reset to
nondefault values.

To prevent dynamical singularities, some of the gear wheels have
attached Inertia blocks with small default inertias in the 10–2 kg-m2

(kilogram-meters2) range.

Subsystem
Parameters

The gear ratio is the ratio of gear wheel radii r, gear wheel teeth N, or
torque transferred τ . The gear ratio is the reciprocal of the ratio of the
angular velocities ω transferred. The drive ratio is the effective gear
ratio, output to input, of the entire transmission.

The basic Lepelletier 7-speed transmission gear ratios are

gRS = Planetary ring/sun gear ratio = rpR/rpS = NpR/NpS

gRSl = Ravigneaux ring/large sun gear ratio = rR/rSl = NR/NSl

gRSs = Ravigneaux ring/small sun gear ratio = rR/rSs = NR/NSs

This table specifies the locked (L) and free (F) clutches A, B, C, D, E,
and F for each gear setting. A free clutch is completely disengaged.

5-64

Lepelletier 7-Speed

Lepelletier 7-Speed Clutch Schedule

Gear
Setting

Drive Ratio A B C D E F

Reverse -gRSl·(1+gRS)/gRS L F F L F L

1 gRSs·(1+gRS)/gRS F F L L F L

2 (gRSl + gRSs)·(1 + gRS)/[gRS·(1 + gRSl)] F F L F L L

3 (1 + gRS)/gRS L F L F F L

4 gRSs·(1 + gRS)/[gRSs·(1 + gRS) - 1] F L L F F L

5 1 L L L F F F

6 gRSl·(1 + gRS)/[gRSl·(1 + gRS) + 1] L L F F F L

7 gRSl/(1 + gRSl) F L F F L L

See Also Controllable Friction Clutch, CR-CR 4-Speed, Inertia, Lepelletier
6-Speed, Planetary Gear, Ravigneaux, Ravigneaux 4-Speed

See “Combining Clutches and Gears into Transmissions” on page 2-36.

5-65

Longitudinal Vehicle Dynamics

Purpose Model longitudinal dynamics and motion of two-axle, four-wheel vehicle

Library Vehicle Components

Description The Longitudinal Vehicle Dynamics block models a two-axle vehicle,
with four equally sized wheels, moving forward or backward along its
longitudinal axis. You specify front and rear longitudinal forces Fxf, Fxr
applied at the front and rear wheel contact points, as well as the incline
angle β, as a set of Simulink® input signals. The block computes the
vehicle velocity Vx and the front and rear vertical load forces Fzf, Fzr
on the vehicle as a set of Simulink output signals. All signals have
MKS units.

You must specify the vehicle mass and certain geometric and kinematic
details:

• Position of the vehicle’s center of gravity (CG) relative to the front
and rear axles and to the ground

• Effective frontal cross-sectional area

• Aerodynamic drag coefficient

• Initial longitudinal velocity

See “Vehicle Model” on page 5-69 for details of the vehicle dynamics.

Limitations

The Longitudinal Vehicle Dynamics block lets you model only
longitudinal (horizontal) dynamics. Depending on the initial
configuration, the block might implement inconsistent initial conditions
for the vertical load forces, causing spurious transient dynamics just
after the simulation starts.

5-66

Longitudinal Vehicle Dynamics

Caution

The Longitudinal Vehicle Dynamics block does not correctly simulate
with sudden changes in the external (longitudinal and gravity) forces.
It correctly models only slowly changing external conditions.

Using Vehicle Component Blocks

Use the blocks of the Vehicle Components library as a starting point
for vehicle modeling. To see how a Vehicle Component block models a
driveline component, look under the block mask. The blocks of this
library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-67

Longitudinal Vehicle Dynamics

Dialog
Box and
Parameters

Mass
Mass m of the vehicle in kilograms (kg). The default is 1200.

Horizontal distance from CG to front axle
Horizontal distance a, in meters (m), from the vehicle’s center of
gravity to the vehicle’s front wheel axle. The default is 1.4.

Horizontal distance from CG to rear axle
Horizontal distance b, in meters (m), from the vehicle’s center of
gravity to the vehicle’s rear wheel axle. The default is 1.6.

5-68

Longitudinal Vehicle Dynamics

CG height from ground
Height h, in meters (m), of the vehicle’s center of gravity from
the ground. The default is 0.5.

Frontal area
Effective cross-sectional area A, in meters squared (m2), presented
by the vehicle in longitudinal motion, for the purpose of computing
the aerodynamic drag force on the vehicle. The default is 3.

Drag coefficient
The dimensionless aerodynamic drag coefficient Cd, for the
purpose of computing the aerodynamic drag force on the vehicle.
The default is 0.4.

Initial longitudinal velocity
The initial value of the vehicle’s horizontal velocity, in
meters/second (m/s). The default is 0.

Vehicle
Model

The vehicle axles are parallel and lie in a plane parallel to the ground.
The longitudinal x direction lies in this plane and perpendicular to the
axles. If the vehicle is traveling on an incline slope β, the vertical z
direction is not parallel to gravity but is always perpendicular to the
axle-ground plane.

This figure and table define the vehicle motion model variables.

�

� �

��

��

��	

��

��	

��

�

�� �

Vehicle Dynamics and Motion

5-69

Longitudinal Vehicle Dynamics

Vehicle Model Variables and Constants

Symbol Meaning and Unit

g = -9.81 m/s2 Gravitational acceleration (m/s2)

β Incline angle (rad)

m Vehicle mass (kg)

A Effective frontal vehicle cross-sectional area (m2)

h Height of vehicle CG above the ground (m)

a, b Distance of front and rear axles, respectively,
from the vertical projection point of vehicle CG
onto the axle-ground plane (m)

Vx Longitudinal vehicle velocity (m/s)

Fxf, Fxr Longitudinal forces on the vehicle at the
front and rear wheel ground contact points,
respectively (N)

Fzf, Fzr Vertical load forces on the vehicle at the front
and rear ground contact points, respectively (N)

Cd Aerodynamic drag coefficient (N·s2/kg·m)

ρ = 1.2 kg/m3 Mass density of air (kg/m3)

|Fd| = ½CdρAVx
2 Aerodynamic drag force (N)

Vehicle Dynamics and Motion

The vehicle motion is determined by the net effect of all the forces
and torques acting on it. The longitudinal tire forces push the vehicle
forward or backward. The weight mg of the vehicle acts through its
center of gravity (CG). Depending on the incline angle, the weight
pulls the vehicle to the ground and either pulls it backward or forward.
Whether the vehicle travels forward or backward, aerodynamic drag
slows it down. For simplicity, the drag is assumed to act through the CG.

5-70

Longitudinal Vehicle Dynamics

mV F F mg

F F F

F C AV V

x x d

x xf xr

d d x x

� = + − ⋅
= +

= − ⋅

sin ,
,

sgn()

β

ρ

1
2

2

Zero vertical acceleration and zero pitch torque require

F
h F mg mV b mg

a b

F
h F mg mV a

zf
d x

zr
d x

=
+ − − + ⋅

+

=
− − − +

(sin) cos

(sin)

β β

β

�

� ⋅⋅
+

mg
a b

cosβ

Note that Fzf + Fzr = mg·cosβ.

Caution

The Longitudinal Vehicle Dynamics block is implemented with a
transfer function that imposes a small delay on the vertical force
reaction to changes in the horizontal forces. The vertical and pitch
equilibria hold only on average.

Examples The demo model drive_4wd_dynamics combines two differentials with
four tire-wheel assemblies to model the contact of tires with the road
and the longitudinal vehicle motion.

The demo model drive_vehicle models an entire one-wheel vehicle,
including Tire and Longitudinal Vehicle Dynamics blocks.

References Centa, G., Motor Vehicle Dynamics: Modeling and Simulation,
Singapore, World Scientific, 1997.

Pacejka, H. B., Tire and Vehicle Dynamics, Society of Automotive
Engineers and Butterworth-Heinemann, Oxford, 2002.

5-71

Longitudinal Vehicle Dynamics

See Also Differential, Tire

See “Modeling and Simulating a Complete Car” on page 2-52.

5-72

Motion Actuator

Purpose Actuate driveline axis with specified motions

Library Sensors & Actuators

Description The Motion Actuator block actuates a driveline axis with specified
motions. You specify the motion as angular velocity (ω) and angular
acceleration (α) with a set of two Simulink® input signals in
radians/second and radians/second2, respectively. The motion specified
is absolute.

The Motion Actuator block has one driveline port. You can connect
it to a driveline axis

• By connecting the port to the end of the axis

• By branching a connection line off the main line and connecting it
to the port

Dialog
Box and
Parameters

This block has no active parameters.

See Also Initial Condition, Motion Sensor, Torque Actuator, Torque Sensor

5-73

Motion Sensor

Purpose Measure motion of driveline axis

Library Sensors & Actuators

Description The Motion Sensor block senses the motion of a driveline axis. The
block can output the motions as a set of three Simulink® signals for the
angle (p), angular velocity (ω), and angular acceleration (α), in radians,
radians/second, and radians/second2, respectively. You can select any
combination or all of these output signals. The motion measured is
absolute.

The Motion Sensor block has one driveline port. You can connect it to
a driveline axis

• By connecting the port to the end of the axis

• By branching a connection line off the main line and connecting it
to the port

Dialog
Box and
Parameters

5-74

Motion Sensor

Show angular position port (p)
Select this check box to create a Simulink outport on the block
for the angular motion signal. This signal has units of radians
(rad/s). The default is unselected.

Initial angle
This field is active only if the Show angular position port
check box is selected. Enter a value for the initial angle of the axis
motion, in radians (rad). The default is 0.

The measured angle is this value plus the time integral of the
angular velocity, from the start time to the current simulation
time.

Show angular velocity port (v)
Select this check box to create a Simulink outport on the
block for the angular velocity signal. This signal has units of
radians/second (rad/s). The default is selected.

Show angular acceleration port (a)
Select this check box to create a Simulink outport on the block
for the angular acceleration signal. This signal has units of
radians/second2 (rad/s2). The default is unselected.

See Also Motion Actuator, Torque Actuator, Torque Sensor

5-75

Planet-Planet

Purpose Represent set of carrier, inner planet, and outer planet gear wheels with
specified planet-planet gear ratio

Library Gears

Description The Planet-Planet gear block represents a set of carrier, inner planet,
and outer planet gear wheels. The outer planet is connected to
and rotates with respect to the carrier. The inner planet rotates
independently. The planets corotate with a fixed gear ratio that
you specify and in opposite directions with respect to the carrier. A
planet-planet gear is, along with a ring-planet gear, a basic element of a
planetary gear set.

Axis Motions and Constraints

The Planet-Planet block imposes one kinematic and one geometric
constraint on the three connected axes:

rCωC = rPoωPo+ rPiωPi , rC = rPo + rPi

In terms of the outer planet-to-inner planet gear ratio goi = rPo/rPi, the
effective kinematic constraint is

(1 + goi)ωC = ωPi + goi·ωPo ,

reducing the three axes to two independent degrees of freedom.

The gear ratio is also the ratio of the number of teeth on each gear and
the ratio of the torques in each axis, goi = NPo/NPi = τ Po/τ Pi.

Warning

All gear ratios must be strictly positive. If any gear ratio equals
0 or becomes negative at any time, a SimDriveline™ simulation
stops with an error.

In general, as shown in the first instance, the inner planet shaft does
not have to be aligned with the carrier shaft.

5-76

Planet-Planet

Planet-Planet Gear Set

5-77

Planet-Planet

Dialog
Box and
Parameters

Outer planet (Po)/Inner planet (Pi) gear ratio
Ratio goi of the outer planet gear radius wheel to the inner planet
gear wheel radius. This gear ratio must be strictly positive. The
default is 2.

Example The drive_planet_planet_pic demo illustrates the planet-planet gear
with an animation.

See Also Planetary Gear, Ring-Planet

See “Representing and Transferring Driveline Motion and Torque” on
page 2-9.

5-78

Planetary Gear

Purpose Represent set of carrier, sun, planet, and ring gear wheels with specified
ring-sun gear ratio

Library Gears

Description The Planetary Gear block represents a set of carrier, ring, planet,
and sun gear wheels. A planetary gear set can be constructed from
planet-planet and ring-planet gears. The ring and sun corotate with a
fixed gear ratio and in opposite directions with respect to the carrier.

To model the planet’s rotational inertia, connect an Inertia block to
the optional planet connector port.

Axis Motions and Constraints

The Planetary Gear block imposes two kinematic and two geometric
constraints on the three connected axes and the fourth, internal wheel
(planet):

rCωC = rSωS+ rPωP , rC = rS + rP

rRωR = rCωC+ rPωP , rR = rC + rP

In terms of the ring-to-sun gear ratio gRS = rR/rS, the key effective
kinematic constraint is

(1 + gRS)ωC = ωS + gRS·ωR

The four degrees of freedom are reduced to two independent degrees
of freedom.

The gear ratio is also the ratio of the number of teeth on each gear and
the ratio of the torques in each axis, gRS = NR/NS = τ R/τ S.

5-79

Planetary Gear

Warning

All gear ratios must be strictly positive. If any gear ratio equals
0 or becomes negative at any time, a SimDriveline™ simulation
stops with an error.

The gear ratio gRS must be strictly greater than one.

Planetary Gear Set

5-80

Planetary Gear

Dialog
Box and
Parameters

Ring (R)/Sun (S) gear ratio
Ratio gRS of the ring gear wheel radius to the sun gear wheel
radius. This gear ratio must be strictly greater than 1. The
default is 2.

Show planet connector port (P)
Selecting this check box makes the connector port for the planet
gear visible and available for connection to other driveline blocks.

Use this connector port to connect an Inertia block if you want to
model the planet gear’s inertia. The default is unselected, with
the planet gear’s inertia neglected in the dynamics.

Example The drive_planetary_pic demo illustrates the planetary gear with an
animation.

See Also Dual-Ratio Planetary, Planet-Planet, Ring-Planet

See “Representing and Transferring Driveline Motion and Torque” on
page 2-9.

5-81

Ravigneaux

Purpose Represent Ravigneaux planetary set of carrier, sun, planet, and ring
gear wheels with specified ring-sun gear ratios

Library Gears

Description The Ravigneaux block represents a double planetary gear set commonly
used in automatic transmissions. This planetary gear set is constructed
from two gear pairs, ring-planet and planet-planet. The Ravigneaux set
has two sun gear wheels, a large sun and a small sun, and a single
carrier gear with two independent planetary gear wheels connected to
it, an inner planet and an outer planet. The carrier is one wheel but has
two radii to couple with the inner and outer planets, respectively. The
two planet gears rotate independently of the carrier but corotate with a
fixed gear ratio with respect to each other. The inner planet couples with
the small sun gear and corotates at a fixed gear ratio with respect to it.
The outer planet couples with the large sun gear and corotates with a
fixed gear ratio with respect to it. Finally, the ring gear also couples and
corotates with the outer planet in a fixed gear ratio with respect to it.

To model the planets’ rotational inertia, connect an Inertia block to
the optional planet connector port.

Axis Motions and Constraints

The Ravigneaux block imposes four kinematic and four geometric
constraints on the four connected axes and the two internal wheels
(inner and outer planets):

rCiωC = rSsωSs + rPiωPi , rCi = rSs + rPi

rCoωC = rSlωSl + rPoωPo , rCo = rSl + rPo

(rCo - rCi)ωC = rPiωPi + rPoωPo , rCo - rCi= rPo + rPi

rRωR = rCoωC + rPoωPo , rR = rCo + rPo

5-82

Ravigneaux

In terms of the ring-to-small sun gear ratio gRSs = rR/rSs and the
ring-to-large sun gear ratio gRSl = rR/rSl, the key kinematic constraints
are

(gRSs – 1)ωC = gRSs·ωR - ωSs

(gRSl + 1)ωC = gRSl·ωR + ωSl

The six degrees of freedom are reduced to two independent degrees
of freedom.

The gear ratios are also the ratios of the number of teeth on each gear
and the ratios of torques in each axis, gRSl = NR/NSl = τ R/τ Sl and gRSs =
NR/NSs = τ R/τ Ss.

Warning

All gear ratios must be strictly positive. If any gear ratio equals
0 or becomes negative at any time, a SimDriveline™ simulation
stops with an error.

The gear ratio gRSs must be strictly greater than the gear ratio
gRSl.

Ravigneaux Gear Set

5-83

Ravigneaux

Dialog
Box and
Parameters

Ring (R)/Large Sun (S1) gear ratio
Ratio gRSl of the ring gear wheel radius to the large sun gear
wheel radius. This gear ratio must be strictly smaller than the
ring-small sun gear ratio. The default is 2.

Ring (R)/Small Sun (S2) gear ratio
Ratio gRSs of the ring gear wheel radius to the small sun gear
wheel radius. This gear ratio must be strictly greater than the
ring-large sun gear ratio. The default is 3.

Show planet connector port (P)
Selecting this check box makes the connector port for the planet
gears visible and available for connection to other driveline blocks.

Use this connector port to connect an Inertia block if you want
to model the planet gears’ inertia as a single body. The default
is unselected, with the planet gears’ inertia neglected in the
dynamics.

5-84

Ravigneaux

Example The drive_ravigneaux_pic demo illustrates the Ravigneaux gear with
an animation.

See Also Dual-Ratio Planetary, Planet-Planet, Planetary Gear, Ring-Planet,
Ravigneaux 4-Speed

See “Representing and Transferring Driveline Motion and Torque” on
page 2-9.

5-85

Ravigneaux 4-Speed

Purpose Model Ravigneaux four-speed transmission based on Ravigneaux gear

Library Transmission Templates

Description

The Ravigneaux 4-Speed transmission block is a subsystem that models
a standard automotive transmission having four selectable forward
gear ratios and a single reverse gear ratio. The main component of
the transmission is a Ravigneaux gear. The input, or driver, shaft is
connected, through a combination of the five clutches, to the small sun,
the large sun, and the carrier of the Ravigneaux gear. The output, or
driven, shaft is connected to the ring of the Ravigneaux gear. The five
transmission clutches A, B, C, D, and E are modeled with Controllable
Friction Clutch blocks. You connect the transmission along a driveline
axis, with the In and Out connector ports representing the input and
output shafts, respectively.

This transmission subsystem has two independent degrees of freedom
and therefore requires two clutches be locked at any instant in order to
achieve a unique drive ratio from the input shaft to the output shaft.
The clutch schedule and the corresponding drive ratios are provided
in the block subsystem’s clutch schedule table. You disengage this
transmission by unlocking all its clutches simultaneously.

5-86

Ravigneaux 4-Speed

Using Transmission Template Subsystems

A Transmission Template block is not library-linked. Once you make a
copy in your model, you can use it as is. You can also open and customize
it as a subsystem by reconfiguring the properties of the individual Gear,
Controllable Friction Clutch, and Inertia blocks.

You must provide a five-component Simulink® vector signal of the
normalized pressures applied to each clutch. The order of the pressure
signals is ABCDE.

Default Inertia, Gear, and Clutch Settings

All the Controllable Friction Clutch blocks in this Transmission
subsystem have their default settings. The Gear ratios are reset to
nondefault values.

To prevent dynamical singularities, some of the gear wheels have
attached Inertia blocks with small default inertias in the 10–2 kg-m2

(kilogram-meters2) range.

Subsystem
Parameters

The gear ratio is the ratio of gear wheel radii r, gear wheel teeth N, or
torque transferred τ . The gear ratio is the reciprocal of the ratio of the
angular velocities ω transferred. The drive ratio is the effective gear
ratio, output to input, of the entire transmission.

The basic Ravigneaux 4-speed transmission gear ratios are

gRSl = Ring/large sun gear ratio = rR/rSl = NR/NSl

gRSs = Ring/small sun gear ratio = rR/rSs = NR/NSs

This table specifies the locked (L) and free (F) clutches A, B, C, D, and E
for each gear setting. A free clutch is completely disengaged.

5-87

Ravigneaux 4-Speed

Ravigneaux 4-Speed Clutch Schedule

Gear
Setting

Drive Ratio A B C D E

Reverse -gRSl F F L L F

1 gRSs F L F L F

2 (gRSl + gRSs)/(1 + gRSl) F L F F L

3 1 L L F F F

4 gRSl/(1 + gRSl) L F F F L

See Also Controllable Friction Clutch, CR-CR 4-Speed, Inertia, Lepelletier
6-Speed, Lepelletier 7-Speed, Ravigneaux

See “Combining Clutches and Gears into Transmissions” on page 2-36.

5-88

Ring-Planet

Purpose Represent set of carrier, planet, and ring gear wheels with specified
ring-planet gear ratio

Library Gears

Description The Ring-Planet gear block represents a set of carrier, planet, and ring
gear wheels. The planet is connected to and rotates with respect to
the carrier. The planet and ring corotate with a fixed gear ratio that
you specify and in the same direction with respect to the carrier. A
ring-planet gear is, along with a planet-planet gear, a basic element of a
planetary gear set.

Axis Motions and Constraints

The Ring-Planet block imposes one kinematic and one geometric
constraint on the three connected axes:

rRωR = rCωC + rPωP , rR = rC + rP

In terms of the ring-to-planet gear ratio gRP = rR/rP, the effective
kinematic constraint is

gRP·ωR = ωP + (gRP – 1)ωC ,

reducing the three axes to two independent degrees of freedom.

The gear ratio is also the ratio of the number of teeth on each gear and
the ratio of the torques in each axis, gRP= NR/NP = τ R/τ P.

Warning

All gear ratios must be strictly positive. If any gear ratio equals
0 or becomes negative at any time, a SimDriveline™ simulation
stops with an error.

The ring-planet gear ratio gRP must be strictly greater than one.

5-89

Ring-Planet

Ring-Planet Gear Set

Dialog
Box and
Parameters

5-90

Ring-Planet

Ring (R)/Planet (P) gear ratio
Ratio gRP of the ring gear wheel radius to the planet gear wheel
radius. This gear ratio must be strictly greater than 1. The
default value is 2.

Example The drive_ring_planet_pic demo illustrates the ring-planet gear with an
animation.

See Also Planet-Planet, Planetary Gear

See “Representing and Transferring Driveline Motion and Torque” on
page 2-9.

5-91

Rotational Coupling

Purpose Connect SimDriveline™ driveline shaft with Simscape™ mechanical
rotational elements

Library Interface Elements

Description You use this block to connect SimDriveline components with mechanical
rotational elements from the Simscape Foundation library. Dynamically,
such a connection is equivalent to connecting the mechanical rotational
elements along the driveshaft connected to the interface.

The Simscape environment supports a domain representing
one-dimensional rotational motion. In a Simscape mechanical rotational
circuit, torque flows through a connection line, while angular velocity
is defined across nodes connected by connection lines. The Rotational
Coupling block rigidly couples a SimDriveline driveshaft to a Simscape
mechanical rotational degree of freedom. By itself, this interface adds or
removes no degrees of freedom to or from the combined driveline-circuit.
Rotational Coupling preserves torque through and motion across the
block, conserving mechanical power.

• The driveline port acts, on the SimDriveline side, like a torque
actuator, feeding torque from the circuit into the driveline, while
maintaining the angular velocity across the block.

• The physical conserving port acts, on the Simscape side, like a
motion actuator, feeding a prescribed motion from the driveline into
the circuit, while preserving the flow of torque through the block.

Like SimDriveline driveline motion, Simscape mechanical motion
occurs in an implicit absolute, inertial reference frame.

5-92

Rotational Coupling

Dialog
Box and
Parameters

This block has no parameters.

Examples The drive_interface_rot_coupling demo illustrates how to connect
drivelines to Simscape mechanical rotational elements with the
Rotational Coupling block.

See Also Consult the Simscape documentation for more about modeling Physical
Networks.

Torque Actuator

5-93

Shared Environment

Purpose Connect two driveline components so that they share same driveline
environment

Library Solver & Inertias

Description The Shared Environment block provides a nonphysical connection
between two independent driveline block diagrams, or subdrivelines.
The block carries no inertia, adds no degrees of freedom, imposes
no constraints, and transfers no motion or torque between the
SimDriveline™ blocks to which it is connected.

You can use this block to connect two independent drivelines into one
driveline, so that the two subdrivelines then share the same driveline
environment. Making this connection does not change the structure or
dynamics of either subdriveline.

Caution

The two connected subdrivelines have to be independently valid. The
resulting composite driveline needs exactly one Driveline Environment
block, not two.

Dialog
Box and
Parameters

This block has no parameters.

See Also Driveline Environment, Housing

See “Essential Steps to Building a Driveline Model” on page 2-7.

5-94

Simple Gear

Purpose Represent gear with fixed gear ratio

Library Gears

Description The Simple Gear block represents a gearbox that constrains the two
connected driveline axes, base (B) and follower (F), to corotate with a
fixed ratio that you specify. You can choose whether the follower axis
rotates in the same or opposite direction as the base axis. If they rotate
in the same direction, ωF and ωB have the same sign. If they rotate in
opposite directions, ωF and ωB have opposite signs.

Axis Motion and Constraint

The Simple Gear imposes a single constraint, specified by the fixed gear
ratio gFB, on the motions and torques of the two axes:

±gFB = ωB/ωF = τ F/τ B

The plus and minus signs refer to the axes corotating in the same or
opposite directions.

If the Simple Gear represents two coupled gear wheels, the gear ratio is
related to the ratio of the radii r of the gear wheels and the ratio of the
number N of teeth on each gear wheel:

gFB = rF/rB = NF/NB

Warning

All gear ratios must be strictly positive. If any gear ratio equals
0 or becomes negative at any time, a SimDriveline™ simulation
stops with an error.

5-95

Simple Gear

Dialog
Box and
Parameters

Follower and base rotate in opposite directions
Select to make the follower and base axes corotate in opposite
directions. The default is selected.

Follower (F)/Base (B) gear ratio
Fixed ratio gFB of the follower axis to the base axis. The gear ratio
must be strictly positive. The default is 2.

See Also “Representing and Transferring Driveline Motion and Torque” on page
2-9

Variable Ratio Gear

5-96

Tire

Purpose Model tire dynamics and motion at end of driveline axis

Library Vehicle Components

Description The Tire block models a vehicle tire in contact with the road. The
driveline port transfers the torque from the wheel axis to the tire. You
must specify the vertical load Fz and vehicle longitudinal velocity Vx as
Simulink® input signals. The model provides the tire angular velocity Ω
and the longitudinal force Fx on the vehicle as Simulink output signals.
All signals have MKS units.

The convention for the Fz signal is positive downward. If the vertical
load Fz is zero or negative, the horizontal tire force Fx vanishes. In that
case, the tire is just touching or has left the ground.

The longitudinal direction lies along the forward-backward axis of the
vehicle. See “Tire Model” on page 5-99 for model details.

Using Vehicle Component Blocks

Use the blocks of the Vehicle Components library as a starting point
for vehicle modeling. To see how a Vehicle Component block models a
driveline component, look under the block mask. The blocks of this
library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-97

Tire

Dialog
Box and
Parameters

Effective rolling radius
Effective radius re, in meters (m), at which the longitudinal force
is transferred to the wheel as a torque. The default is 0.3.

Rated vertical load
Rated vertical load force Fz, in newtons (N). The default is 3000.

Peak longitudinal force at rated load
Maximum longitudinal force Fx, in newtons (N), the tire exerts
on the wheel when the vertical load equals its rated value. The
default is 3500.

Slip at peak force at rated load
The value of the contact slip, in percent (%), when Fx equals its
maximum value and Fz equals its rated value. The default is 10.

5-98

Tire

Relaxation length at rated load
Tire relaxation length σκ, in meters (m), that determines the
transient response of the tire force Fx at the tire’s rated load. The
default is 0.2.

Note For more about the tire parameters, see “Relationship to Block
Parameters” on page 5-104.

Tire Model The tire is a flexible body in contact with the road surface and subject
to slip. When a torque is applied to the wheel axle, the tire deforms,
pushes on the ground (while subject to contact friction), and transfers
the resulting reaction (including rolling resistance) as a force back on
the wheel, pushing the wheel forward or backward.

The Tire block models the tire as a rigid-wheel, flexible-body
combination in contact with the road. The model includes only
longitudinal motion and no camber, turning, or lateral motion. At
full speed, the tire acts like a damper, and the longitudinal force Fx
is determined mainly by the slip. At low speeds, when the tire is
starting up from or slowing down to a stop, the tire behaves more like a
deformable, circular spring. The effective rolling radius re is normally
slightly less than the nominal tire radius because the tire deforms
under its vertical load. The tire relaxation length σκ is the ratio of the
slip stiffness to longitudinal force stiffness. It determines the transient
response of Fx to slip.

This figure and table define the tire model variables. The figure displays
the forces from the ground on the tire. The normal convention for Fz is
positive downward, representing the vertical load on the tire and the
force from the tire on the ground.

5-99

Tire

Tire Dynamics and Motion

Tire Model Variables and Constants

Symbol Meaning and Unit

re Effective rolling radius (m)

Iw Wheel-tire assembly inertia (kg·m2)

τ drive Torque applied by the axle to the wheel
(N·m)

Vx Wheel center longitudinal velocity (m/s)

Ω Wheel angular velocity (rad/s)

Ω′ Contact point angular velocity (rad/s)

Vsx = Vx – reΩ Wheel slip velocity (m/s)

V′ sx = Vx – reΩ′ Contact point slip velocity (m/s)

5-100

Tire

Tire Model Variables and Constants (Continued)

Symbol Meaning and Unit

κ = –Vsx/|Vx| Wheel slip

κ ′ = –V′ sx/|Vx| Contact patch slip

u Tire longitudinal compliance or deformation
(m)

Fz Vertical load on tire (N)

Fx = f(κ ′ , Fz) Longitudinal force exerted by the tire on
the wheel at the contact point (N). Also a
characteristic function f of the tire.

CFx = (∂Fx/∂u)0 Tire longitudinal stiffness (N/m)

σκ = (∂Fx/∂κ ′)0/(CFx) Tire relaxation length (m)

Tire Deformation and Response

If the tire were rigid and did not slip, it would roll and translate as Vx =
reΩ. In reality, even a rigid tire slips, and a tire develops a longitudinal
force Fx only in response to slip. The wheel slip velocity Vsx = Vx – reΩ≠
0. The wheel slip κ = –Vsx/|Vx| is more convenient. For a locked, sliding
tire, κ = –1. For perfect rolling, κ = 0.

The tire is also flexible. Because it deforms, the contact point turns at a
slightly different angular velocity Ω′ from the wheel. The contact point
slip κ ′ = –V′ sx/|Vx|, where V′ sx = Vx – reΩ′ .

The tire deformation u directly measures the difference of wheel and
contact point slip and satisfies

du
dt

V Vsx sx= ′ −

A tire model must provide the longitudinal force Fx the tire exerts on
the wheel once given

5-101

Tire

• Vertical load Fz

• Contact slip κ ′

The tire characteristic function specifies this relationship in the steady
state: Fx = f(κ ′ , Fz).

The contact slip κ ′ in turn depends on the deformation u. The
longitudinal force Fx is approximately proportional to the vertical load
because Fx is generated by contact friction and the normal force Fz. (The
relationship is somewhat nonlinear because of tire deformation and
slip.) The dependence of Fx on κ ′ is more complex.

Tire Dynamics

The tire model incorporates transient as well as steady-state behavior
and is thus appropriate for starting from, and coming to, a stop.

Because a rolling, stressed tire is not in a steady state, the contact slip
κ ′ and deformation u are not constant. Before they can be used in the
characteristic function, their time evolution must be accounted for. In
this model, u and κ ′ are moderate to small. The relationships of Fx
to u and u to κ ′ are then linear:

F C u C C
F
u

C
F

x Fx F Fx
x

u
F

x= ⋅ ⋅ ′ =
∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂ ′

⎛
⎝⎜

⎞

=
 = , κ κκ

κ
,

0 ⎠⎠⎟

= ⋅ ′ = ∂
∂ ′

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=

′=

′= =

κ

κ κ
κ

κσ κ σ
κ

0

0 0
u

F F
u

C Cx x

u
F F , xx

These properties are taken from empirical tire data.

The deformation u evolves according to

du
dt

V u Vx sx+ ⎛
⎝⎜

⎞
⎠⎟

⋅ = − 1
σκ

| |

The slip κ ′ follows from σκ and u. The tire behaves like a driven damper
of damping rate |Vx|/σκ.

5-102

Tire

Tire Dynamics at Low Speeds
At low speeds, the slip remains finite, and the tire behaves more like a
circular spring of stiffness CFx. In this limit, the linear approximation
relating contact slip κ ′ and deformation u becomes singular if damping
is not explicitly included. This relationship can be modified:

′ = → ′ = −
⎛

⎝
⎜

⎞

⎠
⎟κ

σ
κ

σκ κ κ

u u k

C
VV

F
sx ,low

where smooth transition from zero speed is provided by

k
k

V
V

V
V

V
x

x
,

, () cos
| |

, | |
low

low
low=

+
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 1
2 0 1 π

≤

>

⎧

⎨
⎪

⎩
⎪

V

V Vx

low

low0 , | |

Manifestly nonsingular forms of the tire evolution valid at vanishing
speeds are

1

1

C
dF
dt

V V

C
F d

dt
V

Fx

x
x sx

Fx

x
x

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ + ′ = −

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

∂
∂ ′

′
+

| | ,

|

κ

κ
κ

|| ′ = − −
⎛

⎝
⎜

⎞

⎠
⎟ ⋅

∂
∂

κ V
C

F
F

dF
dtsx

Fx

x

z

z1

The second form explicitly shows the dependence on a varying vertical
load Fz.

Finding the Wheel and Vehicle Motion

With the tire characteristic function f(κ ′ , Fz), the vertical load Fz, and
the evolved u and κ ′ , you can find the longitudinal force Fx and wheel
velocity Ω. From these, the equations of motion determine the wheel
angular motion (the angular velocity Ω) and longitudinal motion (the
wheel center velocity Vx):

5-103

Tire

I
d
dt

r F

m
dV
dt

F mg

w e x

x
x

Ω

 =

= −

− ⋅

τ

β

drive

sin

where β is the slope of the incline upon which the vehicle is traveling
(positive for uphill), and m and g are the wheel load mass and the
gravitational acceleration, respectively. τ drive is the driveshaft torque
applied to the wheel axis.

Relationship to Block Parameters

The effective rolling radius is re. The rated load normalizes the tire
characteristic function f(κ ′ , Fz), and the peak force, slip at peak force,
and relaxation length fields determine the peak and slope of f(κ ′ , Fz)
and thus CFx and σκ.

Examples The demo model drive_4wd_dynamics combines two differentials with
four tire-wheel assemblies to model the contact of tires with the road
and the longitudinal vehicle motion.

The demo model drive_vehicle models an entire one-wheel vehicle,
including Tire and Longitudinal Vehicle Dynamics blocks.

References Centa, G., Motor Vehicle Dynamics: Modeling and Simulation,
Singapore, World Scientific, 1997.

Pacejka, H. B., Tire and Vehicle Dynamics, Society of Automotive
Engineers and Butterworth-Heinemann, Oxford, 2002.

See Also Differential, Longitudinal Vehicle Dynamics

See “Modeling and Simulating a Complete Car” on page 2-52.

5-104

Torque Actuator

Purpose Actuate driveline axis with specified torque

Library Sensors & Actuators

Description The Torque Actuator block actuates the connected driveline axis
with a torque. You specify this torque as a Simulink® input signal in
newton-meters.

The Torque Actuator block has one driveline port. You can connect it to
a driveline axis

• By connecting the port to the end of the axis

• By branching a connection line off the main line and connecting it
to the port

Dialog
Box and
Parameters

This block has no active parameters.

See Also Motion Actuator, Motion Sensor, Torque Sensor

5-105

Torque Converter

Purpose Transfer torque between two driveline axes as function of their relative
angular velocity

Library Dynamic Elements

Description A torque converter couples two driveline axes, transferring torque and
angular motion by the hydrodynamic action of a viscous fluid. Unlike a
friction clutch, it cannot lock the axes together. The Torque Converter
block models a torque converter acting between the two connector ports
I and T as a function of the relative angular velocity of the two connected
driveline axes. The Torque Convert block follows these conventions:

• The I port represents the impeller or pump. The T port represents
the turbine.

• The input is the connector port into which power flows into the block.
The output is the connector port from which power flows out of the
block.

• Forward power flow means power flowing from I to T. Reverse power
flow means power flowing from T to I.

• Forward motion means the relative angular velocity ω= ωT – ωI > 0.

Because the coupling of the axes occurs by viscous action, the torque
transfer depends on this difference ω. In normal operation, the two axes
have different speeds, and the output T axis speed never exactly reaches
the input I axis speed (ω< 0). The torque transfer is largest when |ω|
is large and shrinks as |ω| shrinks. Because |ω| can never reach zero
exactly, a torque converter always transfers some torque.

Speed Ratio, Torque Ratio, and Capacity Factor

You specify the torque ratio and the capacity factor of the torque
converter as discrete functions of the speed ratio with tabular vector
entries. The three vectors of the independent and two dependent
variable values must have the same length.

5-106

Torque Converter

• The speed ratio Rω is the output angular speed divided by the input
angular speed. You specify a range of speed ratio values from 0 up
to, but not including, 1.

Rω = min[ωI/ωT, ωT/ωI]

5-107

Torque Converter

• The torque ratio Rτ is the output torque divided by the input torque.

Rτ = τ output / τ input

• The capacity factor K is the input speed divided by the square root
of the input torque.

K = max[ωI, ωT] / √τ input

τ input is the torque flowing into the shaft with the larger speed, and
τ output is the torque flowing into the shaft with the smaller speed.

Tip The Torque Converter block only accepts positive speed ratio values
strictly less than 1. It assumes that output speed is strictly less than
input speed. However, the identification of input and output switches
from the I and T ports, respectively, to the T and I ports if the power
flow is reversed.

If you have torque converter data as functions of speed ratio values
greater than 1, map the function values to the corresponding reciprocal
speed ratio values, which are then less than 1. Specify the function
values along with these reciprocal speed ratio values in the block dialog,
instead of the original speed ratio values.

Using Dynamic Element Blocks

Use the blocks of the Dynamic Elements library as a starting point
for vehicle modeling. To see how a Dynamic Element block models a
driveline component, look under the block mask. The blocks of this
library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-108

Torque Converter

Dialog
Box and
Parameters

Speed ratio
Vector of values of the block function’s independent variable, the
dimensionless speed ratio. These values must be greater than or
equal to 0 and strictly less than 1.

Torque ratio
Vector of values of the block function’s first dependent variable,
the dimensionless torque ratio. Each torque ratio value
corresponds to a speed ratio value.

Capacity factor
Vector of values of the block function’s second dependent
variable, the torque conversion capacity factor. Each capacity
factor value corresponds to a speed ratio value. The units are
radians/second/√(newton-meters).

5-109

Torque Converter

Torque
Converter
Model

Two functions specify the characteristics of the torque converter: the
torque ratio Rτ and the capacity factor K, both as functions of the speed
ratio Rω. You specify these as discrete tabulated functions in the dialog.

Rτ = Rτ (Rω)

K = K(Rω)

In normal operation (forward power flow), the input impeller (I) and
output turbine (T) torques are

τ I = sgn(1 - ωT / ωI) · [ωI / K]2

τ T = τ I · Rτ

Examples The demo model drive_torque_convert simulates a torque converter.

These SimDriveline™ demo models include torque converters as part of
complete drivetrains:

• drive_full_car

• drive_vehicle

References Society of Automotive Engineers, Hydrodynamic Drive Test Code
(Surface Vehicle Recommended Practice), SAE J643, May 2000.

See Also Controllable Friction Clutch, Diesel Engine, Gasoline Engine

See “Modeling and Simulating a Complete Car” on page 2-52.

5-110

Torque Sensor

Purpose Measure torque transferred along driveline axis

Library Sensors & Actuators

Description The Torque Sensor block measures the torque transferred along a
driveline axis at the point where the Torque Sensor is inserted. A
positive torque is transferred from the base (B) axis to the follower (F)
axis at that point if the follower axis accelerates positively with respect
to the base and if no other torques are applied to the follower-connected
inertias. The torque is output as a Simulink® signal in newton-meters.

Dialog
Box and
Parameters

This block has no active parameters.

See Also Motion Actuator, Motion Sensor, Torque Actuator

5-111

Torsional Spring-Damper

Purpose Represent damped torsional spring torque, with free play gap, acting
between two rotating axes

Library Dynamic Elements

Description The Torsional Spring-Damper block models a damped torsional
spring-like torque acting between two rotating axes, the base (B) and
the follower (F). This torque is a function of the relative displacement
angle θ = θF – θB and relative angular velocity ω= dθ/dt = ωF – ωB.

τ = –k(θ – θback) – bω , if θ > +θback

τ = –k(θ + θback) – bω , if θ < –θback

τ = 0 , if –θback < θ < +θback

You specify the restoring torque spring constant or spring rate k as the
stiffness and the kinetic friction torque constant b as the damping. Both
constants must be nonnegative.

Backlash and Initial Offset

The backlash interval is a free play gap of size 2θback across. If θ lies
in this range, the spring and damping torques are not applied. Above
and below the backlash range, both the spring and damping torques
are active.

You specify the initial relative displacement θ0 as the initial offset,
relative to the midway point between the backlash interval endpoints.

5-112

Torsional Spring-Damper

� �

�

������

	�����

��	
	��
���

��

Torsional Spring-Damper Torque Law (Spring Only)

Using Dynamic Element Blocks

Use the blocks of the Dynamic Elements library as a starting point
for vehicle modeling. To see how a Dynamic Element block models a
driveline component, look under the block mask. The blocks of this
library serve as suggestions for developing variant or entirely new
models to simulate the same components. Break the block’s library link
before modifying it and creating your own version.

5-113

Torsional Spring-Damper

Dialog
Box and
Parameters

Stiffness
The spring constant or spring rate k for the restoring torque
imposed by the spring. Must be nonnegative. The units are
newton-meters/radian (N·m/rad). The default is 1e3.

Damping
The damping constant b for the kinetic frictional torque
imposed by the damper. Must be nonnegative. The units are
newton-meters-seconds/radian (N·m·s/rad). The default is 0.1.

Initial Offset
The initial angular offset θ0 of the relative displacement θ, in
radians (rad). The default is 0.

Backlash
The angular free play θback allowed in the torsional spring. Must
be nonnegative. The units are radians (rad). The default is 0.

5-114

Torsional Spring-Damper

Examples The demo model drive_spring illustrates a simple torsional
spring-damper system.

See Also Hard Stop

5-115

Variable Ratio Gear

Purpose Represent gear with controllable, variable gear ratio

Library Gears

Description The Variable Ratio Gear block represents a gearbox that constrains
the two connected driveline axes, base (B) and follower (F), to corotate
with a variable ratio that you can control. You can choose whether the
follower axis rotates in the same or opposite direction as the base axis.
If they rotate in the same direction, ωF and ωB have the same sign. If
they rotate in opposite directions, ωF and ωB have opposite signs.

You specify the variable gear ratio as a function of time with the
Simulink® input signal r. You specify the first derivative of the variable
gear ratio as a function of time with the Simulink input signal v.

Axis Motion and Constraint

The Variable Ratio Gear imposes a single constraint, specified by the
variable gear ratio gFB(t), on the motions and torques of the two axes:

±gFB(t) = ωB/ωF = τ F/τ B

Warning

All gear ratios must be strictly positive. If any gear ratio equals
0 or becomes negative at any time, a SimDriveline™ simulation
stops with an error.

Effect of Coriolis Acceleration

With the Variable Ratio Gear block, you can choose to include or not
include the effect of Coriolis acceleration on the gear motion. If you
choose to include it, you must supply the first derivative, dgFB/dt, of the
gear ratio as another Simulink input signal v.

The Coriolis acceleration is a nonlinear effect proportional to the
angular velocity and the first derivative of the gear ratio:

dωB/dt = gFB·dωF/dt + ωF·dgFB/dt

5-116

Variable Ratio Gear

Caution

If you do not include the Coriolis acceleration, simulation with the
Variable Ratio Gear block will be inaccurate by an error proportional
to dgFB/dt. If the gear ratio gFB changes rapidly, this error can be
significant.

If you include the Coriolis acceleration, the v derivative signal dgFB(t)/dt
must be consistent with the r gear ratio signal gFB(t) to ensure accurate
simulation.

Effect of Linearization

If you simulate your model in linearization mode, the block holds the
variable gear ratio gFB(t) fixed at its initial value, gFB(0).

Dialog
Box and
Parameters

Follower and base rotate in opposite directions
Select to make the follower and base axes corotate in opposite
directions. The default is selected.

5-117

Variable Ratio Gear

Include Coriolis acceleration
Select to include the nonlinear effect of the nonzero first derivative
of the variable gear ratio in the driveline dynamics. The default
is unselected.

See Also Driveline Environment, Simple Gear

See “Representing and Transferring Driveline Motion and Torque” on
page 2-9.

5-118

A

Technical Conventions

Driveline Abbreviations and
Conventions (p. A-2)

Useful symbols — Gear ratio
definitions

Driveline Units (p. A-4) Important units for driveline
simulation

A Technical Conventions

Driveline Abbreviations and Conventions

In this section...

“Abbreviations” on page A-2

“Angular Motion” on page A-2

“Gear Ratios” on page A-2

Abbreviations
An important abbreviation is DoF, which means degree of freedom and
refers to one coordinate of angular motion. All driveline rotational DoFs are
measured with respect to a single absolute coordinate system at rest.

Angular Motion
Standard symbols for angular motion analysis include the following:

Symbol Meaning (Units)

r Gear radius (meters)

N Number of gear teeth

g Gear ratio

θ Angle (radians)

ω Angular velocity (radians/second)

τ Torque (newton-meters)

Gear Ratios
For a pair of coupled, coplanar gear wheels, the gear ratio g21 of gear 2 to gear
1 is defined as the ratio of the second gear wheel radius to the first. This
definition is equivalent to the ratio of the number of teeth on the second gear
wheel to the number of teeth on the first.

g21 ≡ r2/r1 = N2/N1

A-2

Driveline Abbreviations and Conventions

The gear ratio is the ratio of torques and the reciprocal of the angular velocity
ratio.

g21 = τ 2/τ 1 = ω1/ω2

For gear boxes made of more than two gear wheels, the gear ratio is defined
to be the ratio of torques or the reciprocal of the ratio of angular velocities,
between the output and input shafts.

If the gear is reversing, the output ωand τ have opposite signs from the input
ω and τ .

A-3

A Technical Conventions

Driveline Units
The SimDriveline™ environment accepts meters-kilograms-seconds or MKS
(SI) units only.

Quantity Unit

Length meter (m)

Angle radian (rad)

Time second (s)

Angular Velocity radians/second (rad/s)

Angular Acceleration radians/second2 (rad/s2)

Mass kilogram (kg)

Force newton (N)

Inertia kilogram-meter2 (kg-m2)

Torque newton-meter (N-m)

A-4

B

Bibliography

B Bibliography

[1] Centa, G., Motor Vehicle Dynamics: Modeling and Simulation, Singapore,
World Scientific, 1997.

[2] Goodman, L. E., and W. H. Warner, Statics (1964) and Dynamics (1965),
New York, Dover Publications, 2001.

[3] Jurgen, R. K., Electronic Transmission Controls, Troy, Michigan, Society of
Automotive Engineers, 2000.

[4] Juvinall, R. C., Fundamentals of Machine Component Design, New York,
John Wiley & Sons, 1983.

[5] The MathWorks, http://www.mathworks.com/industries/auto/, Industries:
Automotive.

[6] Meriam, J. L., and L. G. Kraige, Dynamics, Volume 2 of Engineering
Mechanics, New York, John Wiley & Sons, 1987.

[7] Nwagboso, C. O., Automotive Sensory Systems, London, Chapman & Hall,
1993.

[8] Pacejka, H. B. Tire and Vehicle Dynamics, Society of Automotive Engineers
and Butterworth-Heinemann, Oxford, 2002.

[9] Society of Automotive Engineers, http://www.sae.org, see “SAE Store”.

[10] Wong, J. Y., Theory of Ground Vehicles, 3rd Ed., New York, Interscience,
2001.

B-2

http://www.mathworks.com/industries/auto/
http://www.sae.org

Index

IndexA
abbreviations A-2
algebraic loop. See mode iteration
angular motion

driveline constraint 2-7
axis

driveline 1-21

B
block libraries

viewing 2-2
brakes

clutch 2-32

C
clutch

and solver settings 3-4
control 2-23
defined 2-23
pressure 2-23
schedule 2-37

code generation
restrictions 3-55
run-time parameters 3-51
SimDriveline and 3-49

connection lines
branching 2-7
defined 2-7

Connection Port block 5-2
connector port 2-7
constraints

counting 3-21
dynamic 3-18
independent 3-21
static 3-18

Controllable Friction Clutch block 5-4
CR-CR 4-Speed block 5-13

D
degrees of freedom

apparent vs. independent 3-13
connecting 3-17
constraining 3-18
counting 3-24
driveline 3-13
example 3-25
fundamental 3-14
terminating 3-22

demo models
example 1-6
running 1-25

Diesel Engine block 5-16
Differential block 5-20
drive ratio 2-36
driveline

defined 1-2
modeling 1-20

Driveline Environment block 5-23
driveshaft 1-21

See also axis
Dual-Ratio Planetary block 5-27
Dynamic Elements block library 2-5

E
engine

modeling 2-53

F
friction

clutch 2-24
kinetic 2-29

Fundamental Friction Clutch 5-31

G
Gasoline Engine block 5-46

Index-1

Index

gear
defined 2-9
indeterminate motion 2-21
ratio 2-9

Gears block library 2-5

H
Hard Stop block 5-50
Housing block 5-54

I
inertia 2-11
Inertia block 5-55
Initial Condition block 5-58
Interface Elements block library 2-6

L
Lepelletier 6-Speed block 5-60
Lepelletier 7-Speed block 5-63
linearization 3-30

example 3-44
Longitudinal Vehicle Dynamics block 5-66

M
mode iteration

code generation and 3-55
defined 2-24
settings 5-23

Motion Actuator block 5-73
Motion Sensor block 5-74

P
Planet-Planet block 5-76
Planetary Gear block 5-79

R
Ravigneaux 4-Speed block 5-86
Ravigneaux block 5-82
Ring-Planet block 5-89
Rotational Coupling block 5-92

S
Sensors & Actuators block library 2-6
Shared Environment block 5-94
Simple Gear block 5-95
Simscape

editing modes 3-2
relation to SimDriveline 1-2
required product 1-4

simulation
internal SimDriveline steps 3-47

solver
adjusting 3-4
and clutch simulation 3-4
and stiffness 3-6
choosing 3-4
fixed-step for clutches 3-7

Solver & Inertias block library 2-5
states

driveline 3-33
example 3-37

T
technical conventions A-1
Tire block 5-97
tire dynamics

modeling 5-99
torque

transfer 2-7
Torque Actuator block 5-105
torque converter 2-56
Torque Converter block 5-106
Torque Sensor block 5-111

Index-2

Index

Torsional Spring-Damper block 5-112
transmission

control 2-45
modeling 2-36
templates 2-44

Transmissions Templates block library 2-5
trimming 3-30

example 3-42
troubleshooting

clutches 3-11
degrees of freedom 3-10
initial conditions 3-12
simulation errors 3-10

U
units, driveline A-4

Utilities block library 2-6

V
variable inertia

modeling 5-55
Variable Ratio Gear block 5-116
Vehicle Components block library 2-6
vehicle dynamics

modeling 5-69

W
wheel

modeling 2-57

Index-3

	toc
	Introducing SimDriveline Software
	Product Overview
	Product Definition
	Driveline Simulation and Physical Modeling

	Related Products
	Required Products
	Other Related Products
	Physical Modeling Product Family
	For Information About MathWorks Products

	Running a Demo Model
	What the Model Represents
	What the Model Illustrates
	Opening the Model
	Running the Model
	Modifying the Model
	Measuring the Drive Ratio of the CR-CR Transmission States
	Changing the Transmission Gear Sequence

	What Can You Do with SimDriveline Software?
	Overview of SimDriveline Software
	Modeling Drivetrains with SimDriveline Software
	Connector Ports and Connection Lines
	Inertias and Gears
	Complex Driveline Elements
	Actuating and Sensing Motion
	Simulating and Analyzing Motion
	Trimming and Linearizing the Motion
	Generating Code — Clutches and Algebraic Loops

	Learning More
	Using the MATLAB Help System for Documentation and Demos
	Finding Special SimDriveline Help

	Simple Models
	Introducing the SimDriveline Block Libraries
	About the SimDriveline Block Library
	Accessing the Libraries
	Microsoft Windows Platforms
	UNIX Platforms
	SimDriveline Library

	Using the Libraries
	Solver & Inertias
	Gears
	Dynamic Elements
	Transmission Templates
	Sensors & Actuators
	Interface Elements
	Utilities
	Vehicle Components

	Essential Steps to Building a Driveline Model
	Representing and Transferring Driveline Motion and Torque
	About Inertia, Motion, and Gears
	Coupling Rotational Motion with Gears
	Gear Coupling Rules
	Generalized Gear Coupling Rules

	Coupling Two Spinning Inertias with a Simple Gear
	Modeling Two Spinning Inertias
	Coupling Two Spinning Inertias with a Simple Gear
	Torque-Actuating Two Coupled, Spinning Inertias
	Sensing and Actuating Motion and Torque

	Coupling Two Spinning Inertias with a Variable Gear
	Coupling Three Spinning Inertias with a Planetary Gear
	Resolving Undetermined Motions in Complex Gears

	Controlling Gear Couplings with Clutches
	About Motion, Gears, and Clutches
	Engaging and Disengaging Gears with Clutches
	How a Clutch Works
	Engaging and Disengaging a Gear with a Clutch

	Modeling Realistic Clutch Systems with Loss
	Creating a Torque Damping Subsystem
	Connecting and Simulating the Damped Clutch System

	Braking Motion with Clutches
	Braking with a Double-Clutch System

	Modeling Friction Clutches at a Fundamental Level

	Combining Clutches and Gears into Transmissions
	About Gears, Clutches, and Transmissions
	Modeling a Simple Two-Speed Transmission with Braking
	Setting Up the Gears, Clutches, and Brake
	Controlling the Transmission State with a Clutch Schedule
	Running the Model, Switching Gears, and Braking
	Running the Model Without Clutch Mode Iteration
	Adding Realistic Clutch Signals

	Introducing the Transmission Templates Library
	Customizing and Using Transmission Blocks

	Modeling a CR-CR 4-Speed Transmission Driveline with Braking
	Replacing Programmed with Controllable Clutch Pressures
	Configuring the CR-CR Transmission Subsystem
	Programming the Clutch Schedule Logic
	Running the CR-CR Transmission Model — Changing Gears
	Shaping Realistic Clutch Pressure Signals

	Modeling and Simulating a Complete Car
	About the Full Car Model
	Understanding the Model’s Global Structure

	Modeling the Engine
	Using an Engine Block from Vehicle Components
	Alternative and Advanced Methods for Modeling Engines

	Modeling the Transmission
	Coupling the Engine to the Transmission
	Modeling the Wheel Assembly and Road Coupling
	Modeling the Final Driveline Assembly and Vehicle Load
	Modeling the Road Load — Adding Brakes
	Measuring the Driveline and Braking Power
	Alternative Differential, Wheel, Road, and Braking Models

	Controlling the Clutches and Braking
	Programming the Transmission and Lockup Clutches
	Shaping Clutch Pressure Signals
	Applying the Brake Torque

	Running the Model
	Clutch Modes and Slippages
	Engine Speed & Torque — Road Speed
	Drive Ratio
	Driveline and Braking Power

	Advanced Methods
	Using the Simscape Editing Mode
	Accessing and Changing the Simscape Configuration Parameters
	Editing Block Parameters in Restricted Mode
	Exceptions to the Restricted Editing Mode Rules

	Improving Performance
	Simulating Drivelines within the Simulink Environment
	Increasing Accuracy and Speed
	Variable- Versus Fixed-Step Solvers
	Solver Choice and Settings: Impact on Accuracy, Speed, and Clutc
	Solving Stiff Drivelines
	Reference

	Optimizing Clutch Mode Changes and Fixed-Step Solvers
	Smoothing and Offsetting Clutch Pressure Control Signals
	Adjusting Clutch Parameters
	Adjusting Solvers for Clutch Mode Changes
	Controlling Mode Iteration
	Reference

	Troubleshooting Simulation Errors
	Overconstrained and Conflicting Degrees of Freedom
	Clutch and Transmission Errors
	Inconsistent Initial Conditions

	Analyzing Degrees of Freedom
	About Driveline Degrees of Freedom and Constraints
	Identifying Degrees of Freedom
	Fundamental Degrees of Freedom
	Driveline Axes as Fundamental Degrees of Freedom
	Rigidly Rotating Inertias Attached to Driveline Axes
	Driveline Axis Branching Rules and Constraints

	Connected Degrees of Freedom
	Dynamic Elements and Internal Torque Generation
	Clutches and Conditional Connections

	Constrained Degrees of Freedom
	Locking a Driveline Axis
	Locking Two Driveline Axes Together with a Clutch
	Coupling Driveline Axes with Gears
	Closed Loops, Effective Constraints, and Constraint Consistency

	Actuating, Sensing, and Terminating Degrees of Freedom
	Directionality, Actuating, and Sensing
	The Effect of Torque Actuation on Degrees of Freedom
	The Effect of Motion Actuation on Degrees of Freedom

	Counting Independent Degrees of Freedom
	Conditional Degrees of Freedom with Clutches

	Counting Degrees of Freedom in a Simple Driveline with a Clutch
	Possible But Nonphysical Configurations

	Trimming and Linearizing Driveline Models
	Trimming, Inverse Dynamics, and Linearization
	Driveline and Simulink States
	Relation Between Trimming and Linearization
	Role of Discrete Driveline Modes
	Inverse Dynamics and Trimming
	Relation of Trimming and Linearization to Control Design

	Finding and Using Driveline States
	Relationship of States to Degrees of Freedom
	Locating Driveline States in Simulink

	Trimming a Driveline with Inverse Dynamics
	Inserting Sensors, Actuators, Scopes, Inports, and Outports
	Counting the States
	Configuring and Initializing the Model
	Finding a Trim Point

	Linearizing a Driveline Model
	Linearizing at the Null State and Null Inputs
	Linearizing at a Predefined State
	Other Linearization Options

	Counting Driveline States in a Full Car
	Identifying the Degrees of Freedom
	Finding the States

	Trimming a Full Car to Rest
	Configuring the Model for Trimming
	Reading the Model States and Outputs
	Defining an Operating Point from the State

	Linearizing a Full Car at Rest
	Creating Model Inputs
	Obtaining the Linearized Model
	Finding the Minimal Realization of the State Space

	How SimDriveline Software Works
	About Driveline Simulation
	State, Constraint, and Motion Actuation Identification
	Independent State Selection and Initialization
	Dependent State Selection and Initialization
	Torque Analysis and Dynamical Simulation
	Clutch Mode Iteration

	Generating Code
	About Code Generation from SimDriveline Models
	Using Code-Related Products and Features
	How SimDriveline Code Generation Differs from Simulink
	Limited Set of SimDriveline Tunable Parameters

	Using Run-Time Parameters in Generated Code
	Changing Run-Time Parameters with the RSim Target

	Limitations
	About SimDriveline and Simulink Limitations
	Continuous Sample Times Required
	Changing Block Properties at the Command Line
	Restricted Simulink Tools
	Unsupported Simulink Tool
	Simulink Tools Not Compatible with SimDriveline Blocks
	Most SimDriveline Parameters Not Tunable

	Restrictions with Generated Code
	Clutch-Related Mode Iteration Disabled
	Restriction on S-Functions Generated from SimDriveline

	Block Reference
	Drivelines and Inertias
	Gears
	Dynamic Elements
	Transmissions
	Sensors and Actuators
	Vehicle Components
	Interface Elements
	Utilities

	Blocks — Alphabetical List
	Restricted Parameters
	Restricted Parameters
	Restricted Parameters

	Technical Conventions
	Driveline Abbreviations and Conventions
	Abbreviations
	Angular Motion
	Gear Ratios

	Driveline Units

	Bibliography
	Index

	tables
	Clutch Schedule for the CR-CR 4-Speed Transmission
	Clutch Schedule for the Simple Two-Speed Transmission
	CR-CR 4-Speed Transmission Clutch Variables
	Drive Shaft Damping Coefficients
	CR-CR 4-Speed Clutch Schedule Logic
	CR-CR Reverse Gear Clutch Schedule Logic
	Clutch State Variables
	CR-CR 4–Speed Clutch Schedule
	Clutch State Variables
	Lepelletier 6-Speed Clutch Schedule
	Lepelletier 7-Speed Clutch Schedule
	Vehicle Model Variables and Constants
	Ravigneaux 4-Speed Clutch Schedule
	Tire Model Variables and Constants

